Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riesz representation theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Adjoints are transposes === {{Main|Transpose of a linear map}} {{See also|Transpose}} It is also possible to define the {{em|[[Transpose of a linear map|transpose]]}} or {{em|[[algebraic adjoint]]}} of <math>A : H \to Z,</math> which is the map <math>{}^{t}A : Z^* \to H^*</math> defined by sending a continuous linear functionals <math>\psi \in Z^*</math> to <math display=block>{}^{t}A(\psi) := \psi \circ A,</math> where the [[Function composition|composition]] <math>\psi \circ A</math> is always a continuous linear functional on <math>H</math> and it satisfies <math>\|A\| = \left\|{}^t A\right\|</math> (this is true more generally, when <math>H</math> and <math>Z</math> are merely [[normed space]]s).{{sfn|Rudin|1991|pp=92-115}} <!-------------- START: Removed info -------------- which is equivalent to: <math display=block>\psi(A h) = \left({}^t A(\psi)\right) h \quad \text{ for all } h \in H \text{ and all } \psi \in Z^*.</math> ---------------- END: Removed info --------------> So for example, if <math>z \in Z</math> then <math>{}^{t}A</math> sends the continuous linear functional <math>\langle z \mid \cdot \rangle_Z \in Z^*</math> (defined on <math>Z</math> by <math>g \mapsto \langle z \mid g \rangle_Z</math>) to the continuous linear functional <math>\langle z \mid A(\cdot) \rangle_Z \in H^*</math> (defined on <math>H</math> by <math>h \mapsto \langle z \mid A(h) \rangle_Z</math>);<ref group=note name="ExplicitDefOfInnerProductOfTranspose" /> using bra-ket notation, this can be written as <math>{}^{t}A \langle z \mid ~=~ \langle z \mid A</math> where the juxtaposition of <math>\langle z \mid</math> with <math>A</math> on the right hand side denotes function composition: <math>H \xrightarrow{A} Z \xrightarrow{\langle z \mid} \Complex.</math> The adjoint <math>A^* : Z \to H</math> is actually just to the transpose <math>{}^{t}A : Z^* \to H^*</math>{{sfn|Rudin|1991|pp=306-312}} when the Riesz representation theorem is used to identify <math>Z</math> with <math>Z^*</math> and <math>H</math> with <math>H^*.</math> Explicitly, the relationship between the adjoint and transpose is: {{NumBlk|:|<math>{}^{t}A ~\circ~ \Phi_Z ~=~ \Phi_H ~\circ~ A^*</math>|{{EquationRef|Adjoint-transpose}}|LnSty=1px dashed black}} which can be rewritten as: <math display=block>A^* ~=~ \Phi_H^{-1} ~\circ~ {}^{t}A ~\circ~ \Phi_Z \quad \text{ and } \quad {}^{t}A ~=~ \Phi_H ~\circ~ A^* ~\circ~ \Phi_Z^{-1}.</math> {{Math proof|title=Proof|drop=hidden|proof= To show that <math>{}^{t}A ~\circ~ \Phi_Z ~=~ \Phi_H ~\circ~ A^*,</math> fix <math>z \in Z.</math> The definition of <math>{}^{t}A</math> implies <math display=block>\left({}^{t}A \circ \Phi_Z\right) z = {}^{t}A \left(\Phi_Z z\right) = \left(\Phi_Z z\right) \circ A</math> so it remains to show that <math>\left(\Phi_Z z\right) \circ A = \Phi_H\left(A^* z\right).</math> If <math>h \in H</math> then <math display=block>\left(\left(\Phi_Z z\right) \circ A\right) h = \left(\Phi_Z z\right)(A h) = \langle z\mid A h \rangle_Z = \langle A^* z\mid h \rangle_H = \left(\Phi_H(A^* z)\right) h,</math> as desired. <math>\blacksquare</math> }} Alternatively, the value of the left and right hand sides of ({{EquationNote|Adjoint-transpose}}) at any given <math>z \in Z</math> can be rewritten in terms of the inner products as: <math display=block>\left({}^{t}A ~\circ~ \Phi_Z\right) z = \langle z \mid A (\cdot) \rangle_Z \quad \text{ and } \quad\left(\Phi_H ~\circ~ A^*\right) z = \langle A^* z\mid\cdot\, \rangle_H</math> so that <math>{}^{t}A ~\circ~ \Phi_Z ~=~ \Phi_H ~\circ~ A^*</math> holds if and only if <math>\langle z \mid A (\cdot) \rangle_Z = \langle A^* z\mid\cdot\, \rangle_H</math> holds; but the equality on the right holds by definition of <math>A^* z.</math> The defining condition of <math>A^* z</math> can also be written <math display=block>\langle z \mid A ~=~ \langle A^*z \mid</math> if bra-ket notation is used.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riesz representation theorem
(section)
Add topic