Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pell's equation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalized Pell's equation == The equation <math display="block">x^2 - n y^2 = N</math> is called the '''generalized'''<ref name="Peker_2021">{{cite book |last=Peker |first=Bilge |date=2021 |title=Current Studies in Basic Sciences, Engineering and Technology 2021 |url=https://www.isres.org/books/chapters/CSBET2021_10_03-01-2022.pdf |publisher= ISRES Publishing |page=136 |access-date=2024-02-25}}</ref><ref name="Tamang_2022">{{cite report |last=Tamang |first=Bal Bahadur |date=August 2022 |title=Solvability of Generalized Pell's Equation and Its Applications in Real Life |url=https://www.researchgate.net/publication/363254319 |publisher=Tribhuvan University |access-date=2024-02-25}}</ref> (or '''general'''<ref name="titu">{{Cite book |last1=Andreescu |first1=Titu |title=Quadratic Diophantine Equations |last2=Andrica |first2=Dorin |publisher=Springer |year=2015 |isbn=978-0-387-35156-8 |location=[[New York City|New York]]}}</ref>) '''Pell's equation'''. The equation <math>u^2 - n v^2 = 1</math> is the corresponding '''Pell's resolvent'''.<ref name="titu"/> A recursive algorithm was given by Lagrange in 1768 for solving the equation, reducing the problem to the case <math>|N| < \sqrt{n}</math>.<ref>{{Cite book |last=Lagrange |first=Joseph-Louis |url=https://gallica.bnf.fr/ark:/12148/bpt6k215570z |title=Oeuvres de Lagrange. T. 2 / publiées par les soins de M. J.-A. Serret [et G. Darboux]; [précédé d'une notice sur la vie et les ouvrages de J.-L. Lagrange, par M. Delambre] |date=1867–1892 |language=fr}}</ref><ref>{{Cite web |last=Matthews |first=Keith |title=The Diophantine Equation ''x''<sup>2</sup> − ''Dy''<sup>2</sup> = ''N'', ''D'' > 0 |url=http://www.numbertheory.org/pdfs/patz5.pdf |archive-url=https://web.archive.org/web/20150318090657/http://www.numbertheory.org/pdfs/patz5.pdf |archive-date=2015-03-18 |url-status=live |access-date=20 July 2020}}</ref> Such solutions can be derived using the continued-fractions method as outlined above. If <math>(x_0, y_0)</math> is a solution to <math> x^2 - n y^2 = N,</math> and <math>(u_k, v_k)</math> is a solution to <math>u^2 - n v^2 = 1,</math> then <math>(x_k, y_k)</math> such that <math>x_k + y_k \sqrt{n} = \big(x_0 + y_0 \sqrt{n}\big)\big(u_k + v_k \sqrt{n}\big)</math> is a solution to <math>x^2 - n y^2 = N</math>, a principle named the ''multiplicative principle''.<ref name="titu"/> The solution <math>(x_k, y_k)</math> is called a ''Pell multiple'' of the solution <math>(x_0, y_0)</math>. There exists a finite set of solutions to <math>x^2 - n y^2 = N</math> such that every solution is a Pell multiple of a solution from that set. In particular, if <math>(u, v)</math> is the fundamental solution to <math>u^2 - n v^2 = 1</math>, then each solution to the equation is a Pell multiple of a solution <math>(x, y)</math> with <math>|x| \le \tfrac{1}{2} \sqrt{|N|} \left(\sqrt{|U|} + 1\right)</math> and <math>|y| \le \tfrac{1}{2 \sqrt{n}} \sqrt{|N|} \left(\sqrt{|U|} + 1\right) </math>, where <math>U = u + v \sqrt n</math>.<ref name="kconrad">{{cite web |last1=Conrad |first1=Keith |title=PELL'S EQUATION, II |url=https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn2.pdf |access-date=14 October 2021}}</ref> If ''x'' and ''y'' are positive integer solutions to the Pell's equation with <math>|N| < \sqrt n</math>, then <math>x/y</math> is a convergent to the continued fraction of <math>\sqrt n</math>.<ref name="kconrad" /> Solutions to the generalized Pell's equation are used for solving certain [[Diophantine equation]]s and [[unit (ring theory)|units]] of certain [[ring (mathematics)|ring]]s,<ref>{{Cite journal |last=Bernstein |first=Leon |date=1975-10-01 |title=Truncated units in infinitely many algebraic number fields of degreen ≧4 |journal=Mathematische Annalen |language=en |volume=213 |issue=3 |pages=275–279 |doi=10.1007/BF01350876 |s2cid=121165073 |issn=1432-1807}}</ref><ref>{{Cite journal |last=Bernstein |first=Leon |date=1 March 1974 |title=On the Diophantine Equation ''x''(''x'' + ''n'')(''x'' + 2''n'') + ''y''(''y'' + ''n'')(''y'' + 2''n'') = ''z''(''z'' + ''n'')(''z'' + 2''n'') |journal=Canadian Mathematical Bulletin |language=en |volume=17 |issue=1 |pages=27–34 |doi=10.4153/CMB-1974-005-5 |s2cid=125002637 |issn=0008-4395|doi-access=free }}</ref> and they arise in the study of [[SIC-POVM]]s in [[quantum information theory]].<ref>{{Cite journal |last1=Appleby |first1=Marcus |last2=Flammia |first2=Steven |last3=McConnell |first3=Gary |last4=Yard |first4=Jon |date=August 2017 |title=SICs and Algebraic Number Theory |journal=[[Foundations of Physics]] |language=en |volume=47 |issue=8 |pages=1042–1059 |arxiv=1701.05200 |bibcode=2017FoPh...47.1042A |doi=10.1007/s10701-017-0090-7 |s2cid=119334103 |issn=0015-9018}}</ref> The equation <math display="block">x^2 - n y^2 = 4</math> is similar to the resolvent <math>x^2 - n y^2 = 1</math> in that if a minimal solution to <math>x^2 - n y^2 = 4</math> can be found, then all solutions of the equation can be generated in a similar manner to the case <math>N = 1</math>. For certain <math>n</math>, solutions to <math>x^2 - n y^2 = 1</math> can be generated from those with <math>x^2 - n y^2 = 4</math>, in that if <math>n \equiv 5 \pmod{8},</math> then every third solution to <math>x^2 - n y^2 = 4</math> has <math>x, y</math> even, generating a solution to <math>x^2 - n y^2 = 1</math>.<ref name="titu" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pell's equation
(section)
Add topic