Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pauli matrices
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====The group composition law of {{math|SU(2)}}==== A straightforward application of formula {{EquationNote|(2)}} provides a parameterization of the composition law of the group {{math|SU(2)}}.{{efn|The relation among {{math|''a, b, c,'' ''' n, m, k '''}} derived here in the {{math|2 × 2}} representation holds for ''all representations'' of {{math|SU(2)}}, being a ''group identity''. Note that, by virtue of the standard normalization of that group's generators as ''half'' the Pauli matrices, the parameters ''a'',''b'',''c'' correspond to ''half'' the rotation angles of the rotation group. That is, the Gibbs formula linked amounts to <math>\hat k \tan c/2= (\hat n \tan a/2+ \hat m \tan b/2 -\hat m \times \hat n \tan a/2 ~ \tan b/2 )/(1-\hat m\cdot \hat n \tan a/2 ~\tan b/2 )</math>.}} One may directly solve for {{mvar|c}} in <math display=block>\begin{align} e^{ia\left(\hat{n} \cdot \vec{\sigma}\right)} e^{ib\left(\hat{m} \cdot \vec{\sigma}\right)} &= I\left(\cos a \cos b - \hat{n} \cdot \hat{m} \sin a \sin b\right) + i\left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n} \times \hat{m} ~ \sin a \sin b \right) \cdot \vec{\sigma} \\ &= I\cos{c} + i \left(\hat{k} \cdot \vec{\sigma}\right) \sin c \\ &= e^{ic \left(\hat{k} \cdot \vec{\sigma}\right)}, \end{align}</math> which specifies the generic group multiplication, where, manifestly, <math display=block>\cos c = \cos a \cos b - \hat{n} \cdot \hat{m} \sin a \sin b~,</math> the [[spherical law of cosines]]. Given {{mvar|c}}, then, <math display=block>\hat{k} = \frac{1}{\sin c}\left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n}\times\hat{m} \sin a \sin b\right).</math> Consequently, the composite rotation parameters in this group element (a closed form of the respective [[Baker–Campbell–Hausdorff formula|BCH expansion]] in this case) simply amount to<ref>{{cite book |first=J.W. |last=Gibbs |year=1884 |title=Elements of Vector Analysis |place=New Haven, CT |page=67 |author-link=J. W. Gibbs |chapter=4. Concerning the differential and integral calculus of vectors |chapter-url={{GBurl|VurzAAAAMAAJ|p=67}} |publisher=Tuttle, Moorehouse & Taylor }} In fact, however, the formula goes back to [[Olinde Rodrigues]] (1840), replete with half-angle: {{cite journal |first=Olinde |last=Rodrigues |author-link=Olinde Rodrigues |year=1840 |title=Des lois géometriques qui regissent les déplacements d' un systéme solide dans l' espace, et de la variation des coordonnées provenant de ces déplacement considérées indépendant des causes qui peuvent les produire |journal=[[J. Math. Pures Appl.]] |volume=5 |pages=380–440 |url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1840_1_5_A39_0.pdf}}</ref> <math display=block> e^{ic \hat{k} \cdot \vec{\sigma}} = \exp \left( i\frac{c}{\sin c} \left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n}\times\hat{m} ~ \sin a \sin b\right) \cdot \vec{\sigma}\right). </math> (Of course, when <math>\hat{n}</math> is parallel to <math>\hat{m}</math>, so is <math>\hat{k}</math>, and {{math|1=''c'' = ''a + b''}}.) {{see also|Rotation formalisms in three dimensions#Rodrigues vector|Spinor#Three dimensions}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pauli matrices
(section)
Add topic