Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Orbital elements
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Euler angle transformations == The angles {{math|Ω}}, ''{{mvar|i}}'', ''{{mvar|ω}}'' are the [[Euler angles]] (corresponding to ''{{mvar|α}}'', ''{{mvar|β}}'', ''{{mvar|γ}}'' in the notation used in that article) characterizing the orientation of the coordinate system {{block indent|em=1.5|text='''{{math|x̂}}''', '''{{math|ŷ}}''', '''{{math|ẑ}}''' from the inertial coordinate frame '''{{math|Î}}''', '''{{math|Ĵ}}''', '''{{math|K̂}}'''}} where: * '''{{math|Î}}''', '''{{math|Ĵ}}''' is in the equatorial plane of the central body. '''{{math|Î}}''' is in the direction of the vernal equinox. '''{{math|Ĵ}}''' is perpendicular to '''{{math|Î}}''' and with '''{{math|Î}}''' defines the reference plane. '''{{math|K̂}}''' is perpendicular to the reference plane. Orbital elements of bodies (planets, comets, asteroids, ...) in the Solar System usually the [[ecliptic]] as that plane. * '''{{math|x̂}}''', '''{{math|ŷ}}''' are in the orbital plane and with '''{{math|x̂}}''' in the direction to the [[pericenter]] ([[periapsis]]). '''{{math|ẑ}}''' is perpendicular to the plane of the orbit. '''{{math|ŷ}}''' is mutually perpendicular to '''{{math|x̂}}''' and '''{{math|ẑ}}'''. Then, the transformation from the '''{{math|Î}}''', '''{{math|Ĵ}}''', '''{{math|K̂}}''' coordinate frame to the '''{{math|x̂}}''', '''{{math|ŷ}}''', '''{{math|ẑ}}''' frame with the Euler angles {{math|Ω}}, ''{{mvar|i}}'', ''{{mvar|ω}}'' is: <math display="block">\begin{align} x_1 &= \cos \Omega \cdot \cos \omega - \sin \Omega \cdot \cos i \cdot \sin \omega\ ;\\ x_2 &= \sin \Omega \cdot \cos \omega + \cos \Omega \cdot \cos i \cdot \sin \omega\ ;\\ x_3 &= \sin i \cdot \sin \omega ;\\ \, \\ y_1 &=-\cos \Omega \cdot \sin \omega - \sin \Omega \cdot \cos i \cdot \cos \omega\ ;\\ y_2 &=-\sin \Omega \cdot \sin \omega + \cos \Omega \cdot \cos i \cdot \cos \omega\ ;\\ y_3 &= \sin i \cdot \cos \omega\ ;\\ \, \\ z_1 &= \sin i \cdot \sin \Omega\ ;\\ z_2 &=-\sin i \cdot \cos \Omega\ ;\\ z_3 &= \cos i\ ;\\ \end{align}</math> <math display="block">\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{bmatrix} = \begin{bmatrix} \cos\omega & \sin\omega & 0 \\ -\sin\omega & \cos\omega& 0 \\ 0 & 0 & 1 \end{bmatrix} \, \begin{bmatrix} 1 & 0 &0 \\ 0 & \cos i & \sin i\\ 0 & -\sin i & \cos i \end{bmatrix} \, \begin{bmatrix} \cos\Omega & \sin\Omega & 0 \\ -\sin\Omega & \cos\Omega& 0 \\ 0 & 0 & 1 \end{bmatrix}\,; </math> where <math display="block">\begin{align} \mathbf\hat{x} &= x_1\mathbf\hat{I} + x_2\mathbf\hat{J} + x_3\mathbf\hat{K} ~;\\ \mathbf\hat{y} &= y_1\mathbf\hat{I} + y_2\mathbf\hat{J} + y_3\mathbf\hat{K} ~;\\ \mathbf\hat{z} &= z_1\mathbf\hat{I} + z_2\mathbf\hat{J} + z_3\mathbf\hat{K} ~.\\ \end{align}</math> The inverse transformation, which computes the 3 coordinates in the I-J-K system given the 3 (or 2) coordinates in the x-y-z system, is represented by the inverse matrix. According to the rules of [[Invertible matrix|matrix algebra]], the inverse matrix of the product of the 3 rotation matrices is obtained by inverting the order of the three matrices and switching the signs of the three Euler angles. That is, <math display="block">\begin{bmatrix} i_1 & i_2 & i_3 \\ j_1 & j_2 & j_3 \\ k_1 & k_2 & k_3 \end{bmatrix} = \begin{bmatrix} \cos\Omega & -\sin\Omega & 0 \\ \sin\Omega & \cos\Omega& 0 \\ 0 & 0 & 1 \end{bmatrix} \, \begin{bmatrix} 1 & 0 &0 \\ 0 & \cos i & -\sin i\\ 0 & \sin i & \cos i \end{bmatrix} \, \begin{bmatrix} \cos\omega & -\sin\omega & 0 \\ \sin\omega & \cos\omega& 0 \\ 0 & 0 & 1 \end{bmatrix}\,; </math> where <math display="block">\begin{align} \mathbf\hat{I} &= i_1\mathbf\hat{x} + i_2\mathbf\hat{y} + i_3\mathbf\hat{z} ~;\\ \mathbf\hat{J} &= j_1\mathbf\hat{x} + j_2\mathbf\hat{y} + j_3\mathbf\hat{z} ~;\\ \mathbf\hat{K} &= k_1\mathbf\hat{x} + k_2\mathbf\hat{y} + k_3\mathbf\hat{z} ~.\\ \end{align}</math> The transformation from '''{{math|x̂}}''', '''{{math|ŷ}}''', '''{{math|ẑ}}''' to Euler angles {{math|Ω}}, ''{{mvar|i}}'', ''{{mvar|ω}}'' is: <math display="block">\begin{align} \Omega &= \operatorname{arg}\left( -z_2, z_1 \right)\\ i &= \operatorname{arg}\left( z_3, \sqrt{{z_1}^2 + {z_2}^2} \right)\\ \omega &= \operatorname{arg}\left( y_3, x_3 \right)\\ \end{align}</math> where {{math|arg(''x'',''y'')}} signifies the polar argument that can be computed with the standard function {{mono|[[atan2|atan2(y,x)]]}} available in many programming languages.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Orbital elements
(section)
Add topic