Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Octonion
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== The octonions play a significant role in the classification and construction of other mathematical entities. For example, the [[exceptional Lie group]] {{math|[[G2 (mathematics)|''G''<sub>2</sub>]]}} is the automorphism group of the octonions, and the other exceptional Lie groups {{math|[[F4 (mathematics)|''F''<sub>4</sub>]]}}, {{math|[[E6 (mathematics)|''E''<sub>6</sub>]]}}, {{math|[[E7 (mathematics)|''E''<sub>7</sub>]]}} and {{math|[[E8 (mathematics)|''E''<sub>8</sub>]]}} can be understood as the isometries of certain [[projective plane]]s defined using the octonions.<ref>Baez (2002), section 4.</ref> The set of [[self-adjoint]] 3 × 3 octonionic [[matrix (mathematics)|matrices]], equipped with a symmetrized matrix product, defines the [[Albert algebra]]. In [[discrete mathematics]], the octonions provide an elementary derivation of the [[Leech lattice]], and thus they are closely related to the [[sporadic simple groups]].<ref>{{cite journal|last=Wilson |first=Robert A. |author-link=Robert Arnott Wilson |title=Octonions and the Leech lattice |journal=[[Journal of Algebra]] |volume=322 |issue=6 |date=2009-09-15 |pages=2186–2190 |doi=10.1016/j.jalgebra.2009.03.021 |url=http://www.maths.qmul.ac.uk/%7Eraw/pubs_files/octoLeech1rev.pdf}}</ref><ref>{{cite journal|last=Wilson |first=Robert A. |author-link=Robert Arnott Wilson |title=Conway's group and octonions |journal=Journal of Group Theory |date=2010-08-13 |doi=10.1515/jgt.2010.038 |volume=14 |pages=1–8 |s2cid=16590883 |url=http://www.maths.qmul.ac.uk/~raw/pubs_files/octoConway.pdf}}</ref> Applications of the octonions to physics have largely been conjectural. For example, in the 1970s, attempts were made to understand [[quark]]s by way of an octonionic [[Hilbert space]].<ref>{{cite journal|last1=Günaydin |first1=M. |last2=Gürsey |first2=F. |author-link2=Feza Gürsey |year=1973 |title=Quark structure and octonions |journal=[[Journal of Mathematical Physics]] |volume=14 |issue=11 |pages=1651–1667 |doi=10.1063/1.1666240|bibcode=1973JMP....14.1651G }}<br />{{cite journal|last1=Günaydin |first1=M. |last2=Gürsey |first2=F. |author-link2=Feza Gürsey |year=1974 |title=Quark statistics and octonions |journal=[[Physical Review D]] |volume=9 |issue=12 |pages=3387–3391 |doi=10.1103/PhysRevD.9.3387|bibcode=1974PhRvD...9.3387G }}</ref> It is known that the octonions, and the fact that only four normed division algebras can exist, relates to the [[spacetime]] dimensions in which [[supersymmetry|supersymmetric]] [[quantum field theory|quantum field theories]] can be constructed.<ref>{{cite journal|last1=Kugo |first1=Taichiro |last2=Townsend |first2=Paul |title=Supersymmetry and the division algebras |journal=[[Nuclear Physics B]] |volume=221 |issue=2 |date=1983-07-11 |pages=357–380 |doi=10.1016/0550-3213(83)90584-9|bibcode=1983NuPhB.221..357K |url=https://cds.cern.ch/record/140183 }}</ref><ref>{{cite encyclopedia|last1=Baez |first1=John C. |author-link1=John C. Baez |last2=Huerta |first2=John |title=Division Algebras and Supersymmetry I |arxiv=0909.0551 |encyclopedia=Superstrings, Geometry, Topology, and C*-algebras |publisher=[[American Mathematical Society]] |year=2010 |editor-last1=Doran |editor-first1=R. |editor-last2=Friedman |editor-first2=G. |editor-last3=Rosenberg |editor-first3=J.}}</ref> Also, attempts have been made to obtain the [[Standard Model]] of elementary particle physics from octonionic constructions, for example using the "Dixon algebra" <math>\ \mathbb C \otimes \mathbb H \otimes \mathbb O ~.</math><ref name=wolchover>{{cite magazine |last=Wolchover |first=Natalie |author-link=Natalie Wolchover |date=2018-07-20 |title=The peculiar math that could underlie the laws of nature |website=[[Quanta Magazine]] |url=https://www.quantamagazine.org/the-octonion-math-that-could-underpin-physics-20180720/ |access-date=2018-10-30}}</ref><ref>{{cite journal |last=Furey |first=Cohl |author-link=Cohl Furey |date=2012-07-20 |title=Unified theory of ideals |journal=[[Physical Review D]] |volume=86 |issue=2 |page=025024 |doi=10.1103/PhysRevD.86.025024 |arxiv=1002.1497 |bibcode=2012PhRvD..86b5024F |s2cid=118458623 }}<br />{{cite journal|last=Furey |first=Cohl |author-link=Cohl Furey |date=2018-10-10 |title=Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra |journal=[[Physics Letters B]] |volume=785 |pages=84–89 |doi=10.1016/j.physletb.2018.08.032 |bibcode=2018PhLB..785...84F |arxiv=1910.08395 |s2cid=126205768 }}<br/>{{cite journal|last=Stoica |first=O.C. |title=Leptons, quarks, and gauge from the complex Clifford algebra <math>\mathbb{C}\ell_6</math> |journal=[[Advances in Applied Clifford Algebras]] |year=2018 |doi=10.1007/s00006-018-0869-4 |volume=28 |page=52 |arxiv=1702.04336 |s2cid=125913482 }}<br />{{cite conference |last=Gresnigt |first=Niels G. |title=Quantum groups and braid groups as fundamental symmetries |conference=European Physical Society conference on High Energy Physics, 5–12 July 2017, Venice, Italy |date=2017-11-21 |arxiv=1711.09011}}<br />{{cite book |last=Dixon |first=Geoffrey M. |year=1994 |title=Division Algebras: Octonions, quaternions, complex numbers, and the algebraic design of physics |publisher=[[Springer-Verlag]] |doi=10.1007/978-1-4757-2315-1 |isbn=978-0-7923-2890-2 |oclc=30399883 }}<br/>{{cite web |last=Baez |first=John C. |author-link=John C. Baez |date=2011-01-29 |title=The Three-Fold Way (part 4) |access-date=2018-11-02 |website=[[The n-Category Café]] |url=https://golem.ph.utexas.edu/category/2011/01/the_threefold_way_part_4_1.html}}</ref> Octonions have also arisen in the study of [[black hole entropy]], [[quantum information science]],<ref>{{cite journal|last1=Borsten |first1=Leron |last2=Dahanayake |first2=Duminda |last3=Duff |first3=Michael J. |author-link3=Michael Duff (physicist) |last4=Ebrahim |first4=Hajar |last5=Rubens |first5=Williams |title=Black holes, qubits and octonions |journal=[[Physics Reports]] |volume=471 |issue=3–4 |year=2009 |pages=113–219 |arxiv=0809.4685|doi=10.1016/j.physrep.2008.11.002 |bibcode=2009PhR...471..113B |s2cid=118488578 }}</ref><ref>{{cite journal|last1=Stacey |first1=Blake C. |title=Sporadic SICs and the Normed Division Algebras |journal=[[Foundations of Physics]] |year=2017 |volume=47 |issue=8 |pages=1060–1064 |doi=10.1007/s10701-017-0087-2 |arxiv=1605.01426 |bibcode=2017FoPh...47.1060S|s2cid=118438232 }}</ref> [[string theory]],<ref>{{Cite web|url=https://www.newscientist.com/article/mg20327232-100-beyond-space-and-time-8d-surfers-paradise/|title=Beyond space and time: 8D – Surfer's paradise|website=New Scientist}}</ref> and [[Digital image processing|image processing]].<ref>{{cite journal | url=https://ieeexplore.ieee.org/document/10552342 | doi=10.1109/LSP.2024.3411934 | bibcode=2024ISPL...31.1615J | title=Octonion Phase Retrieval | last1=Jacome | first1=Roman | last2=Mishra | first2=Kumar Vijay | last3=Sadler | first3=Brian M. | last4=Arguello | first4=Henry | journal=IEEE Signal Processing Letters | date=2024 | volume=31 | page=1615 | arxiv=2308.15784 }}</ref> Octonions have been used in solutions to the [[hand eye calibration problem]] in [[robotics]].<ref>{{cite journal |first1=J. |last1=Wu |first2=Y. |last2=Sun |first3=M. |last3=Wang and |first4=M. |last4=Liu |title=Hand-Eye Calibration: 4-D Procrustes Analysis Approach |journal=IEEE Transactions on Instrumentation and Measurement |volume=69 |issue=6 |pages=2966–81 |date=June 2020 |doi=10.1109/TIM.2019.2930710 |bibcode=2020ITIM...69.2966W |s2cid=201245901 }}</ref> Deep octonion networks provide a means of efficient and compact expression in machine learning applications.<ref>{{cite journal |first1=J. |last1=Wu |first2=L. |last2=Xu |first3=F. |last3=Wu |first4=Y. |last4=Kong |first5=L. |last5=Senhadji |first6=H. |last6=Shu |title=Deep octonion networks |journal=Neurocomputing |volume=397 |issue= |pages=179–191 |date=2020 |doi=10.1016/j.neucom.2020.02.053 |s2cid=84186686 |id=hal-02865295|doi-access=free }}</ref><ref>{{Cite journal |title=Marine Debris Segmentation Using a Parameter Efficient Octonion-Based Architecture |date=2023 |doi=10.1109/lgrs.2023.3321177 |last1=Bojesomo |first1=Alabi |last2=Liatsis |first2=Panos |last3=Almarzouqi |first3=Hasan |journal=IEEE Geoscience and Remote Sensing Letters |volume=20 |pages=1–5 |bibcode=2023IGRSL..2021177B |doi-access=free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Octonion
(section)
Add topic