Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Mathematical induction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example: Fibonacci numbers ==== Complete induction is most useful when several instances of the inductive hypothesis are required for each induction step. For example, complete induction can be used to show that <math display="block"> F_n = \frac{\varphi^n - \psi^n}{\varphi - \psi}</math> where <math>F_n</math> is the {{mvar|n}}-th [[Fibonacci number]], and <math display="inline">\varphi = \frac{1}{2}(1 + \sqrt 5)</math> (the [[golden ratio]]) and <math display="inline">\psi = \frac{1}{2} (1 - \sqrt 5)</math> are the [[root of a polynomial|roots]] of the [[polynomial]] <math>x^2-x-1</math>. By using the fact that <math>F_{n+2} = F_{n+1} + F_{n}</math> for each <math>n \in \mathbb{N}</math>, the identity above can be verified by direct calculation for <math display="inline">F_{n+2}</math> if one assumes that it already holds for both <math display="inline">F_{n+1}</math> and <math display="inline">F_n</math>. To complete the proof, the identity must be verified in the two base cases: <math>n = 0</math> and <math display="inline">n = 1</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Mathematical induction
(section)
Add topic