Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Magnetic sail
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Magnetic field model === In a design, either the magnetic field source strength or the magnetopause radius <math>R_{mp}\approx L</math> the characteristic length must be chosen. A good approximation from Cattell<ref name="05ja026_full" /> and Toivanen<ref name=":8" /> for a magnetic field falloff rate <math>f_o, 1\leq f_o \leq3 </math> for a distance <math display="inline">R_0 \leq r \leq R_{mp} </math> from the field source to magnetopause starts with the equation: {{NumBlk2|:|<math>B(r)\approx B(R_0)\biggl(\frac {R_0}{r}\biggr)^{f_o}</math>|MFM.1}} where <math>B(R_0) </math> is the magnetic field at a radius <math>R_0</math> near the field source that falls off near the source as <math>1/r^3</math> as follows: {{NumBlk2|:|<math>B(R_0) \approx C_{0} \frac {\mu_0\, \mathbf m }{4 \, \pi \, R_0^3}</math>|MFM.2}} where <math>C_0</math> is a constant multiplying the [[magnetic moment|magnetic moment (A m<sup>2</sup>)]] <math>\mathbf m</math> to make <math>B(r)</math> match a target value at <math display="inline">r>>R_0</math>. When far from the field source, a magnetic dipole is a good approximation and choosing the above value of <math>B(R_0) </math> with <math>C_0</math> =2 near the field source was used by Andrews and Zubrin.<ref name=":13" /> The [[Magnetic moment#Amperian loop model|Amperian loop model]] for the magnetic moment is <math>\mathbf m = I_c S</math>, where <math>I_c</math> is the current in [[Ampere|amperes (A)]] and <math>S= \pi \, R_c^2</math> is the surface area for a coil (loop) of radius <math>R_c</math>. Assuming that <math>R_0 \approx R_c</math> and substituting the expression for the magnetic moment <math>\mathbf m</math> into equation {{EquationNote|MFM.2}} yields the following:{{NumBlk2|:|<math>I_c=\frac {4}{C_0 \mu_0} B(R_c) \, R_c</math>|MFM.3}} When the magnetic field flux density <math>B(R_0) </math> is specified, substituting <math>B_{mp} </math> from the pressure balance analysis from equation {{EquationNote|MHD.2}} into the above and solving for <math display="inline">R_{mp} </math> yields the following:{{NumBlk2|:|<math>L \approx R_{mp} \approx R_0 \biggl(\frac {B(R_0)}{B_{mp} } \biggr)^{1/f_o} </math>|MFM.4}} This is the expression for <math>L</math> when <math>f_o=3 </math> with <math>C_{SO}=1/2 </math><ref name=":3" />{{Rp|location=Eq (4)}} and <math>C_{SO}=2 </math><ref name=":8" />{{Rp|location=Eq (4)}} and is the same form as the [[Magnetopause#Magnetopause distance of the Earth|magnetopause distance of the Earth]]. Equation {{EquationNote|MFM.4}} shows directly how a decreased falloff rate <math>f_o </math> dramatically increases the effective sail area <math>S=\pi R_{mp}^2 </math> for a given field source magnetic moment <math>\mathbf m</math> and <math>B_{mp}</math> determined from the pressure balance equation {{EquationNote|MHD.1}}. Substituting this into equation {{EquationNote|MHD.3}} yields the plasma wind force as a function of falloff rate <math>f_o </math>, plasma density <math>\rho</math>, coil radius <math>R_c \approx R_0</math>, coil current <math>I_c</math> and plasma wind velocity <math>u</math> as follows:{{NumBlk2|:|<math>F_w(f_o)=\frac {C_d}{2} \rho u^2 \, \pi \, R_0^2 \, \biggl(\frac {B(R_0)}{B_{mp} } \biggr)^{2/f_o} = \frac {C_d}{2} \rho u^2 \, \pi \, R_0^2 \, \biggl(\frac {\sqrt{\mu_0} I_c C_0}{4 R_0 \, u \sqrt{\rho \,C_{SO} } } \biggr)^{2/f_o} </math>|MFM.5}} using equation {{EquationNote|MFM.3}} for <math>B(R_0) </math> and equation {{EquationNote|MHD.2}} for <math>B_{mp}</math>. This is the same expression as equation (10b) when <math>f_o=3 </math> and <math>C_{SO}=1/2 </math><ref name=":0" /> and<ref name=":14" />{{Rp|location=Eq (108)}} and the right hand side from equation (20) specifically applied to M2P2<ref name=":8" /> with other numerical coefficients grouped into the <math>C_d</math> term. Note that force increases as falloff rate decreases. For the solar wind case, substituting {{EquationNote|MHD.2}} into {{EquationNote|MFM.5}} and using the function for the [[#Acceleration/deceleration in a stellar plasma wind|solar wind plasma mass density]] <math>\rho_{sw}(a_\odot)=\rho_{sw}(1)/a_\odot ^2</math>,<ref name=":32" />{{Rp|location=Fig 5}} with <math>a_\odot </math> the distance from the sun in Astronomical units (AU) results in the following expression: {{NumBlk2|:|<math>F_{sw}(f_o, a_\odot)=C_{f_o} \, ( \rho_{sw}(a_\odot) \, u^2))^ {1-1/f_o} \, R_0^2 \, S </math>|MFM.6}}where <math>C_{f_o}= \frac {C_d}{2} \biggl(\frac {B(R_0)^2}{\mu_0 C_{SO}}\biggr)^{1/f_o} , \mathsf{and} \, S = \pi \, R_{mp}^2 </math>, the effective sail blocking area. This equation explicitly shows the relationship upon solar wind plasma mass density <math>\rho_{sw}(a_\odot) </math> as a function of distance from the Sun <math>a_\odot </math>. For the case <math>f_o</math>=1 the expansion of the magnetopause radius <math>R_{mp} </math> exactly matches the decreasing value of <math>\rho_{sw}(a_\odot) </math> exactly as the distance from the Sun <math>a_\odot </math> increases, resulting in constant force and hence constant acceleration inside the heliosphere.<ref name="Slough2006" /> Note that <math>C_{f_o}</math> includes the term <math>B(R_0)^{2/f_o}</math>, which means that as <math>f_o</math> increases that the magnetic field near the field source <math>B(R_0)</math> must increase to maintain the same force as compared with a smaller value of <math>f_o</math>. The example in the [[#Overview|overview]] section set <math>C_{f_o}</math>=1, <math>u</math>=1, <math>R_0</math>=1, and <math>S</math>=1 so that the force at <math>a_\odot </math>=1 was equal to 1 for all values of <math>f_o</math> at 1 AU.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Magnetic sail
(section)
Add topic