Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Log-normal distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Alternative parameterizations === In addition to the characterization by <math>\mu, \sigma</math> or <math>\mu^*, \sigma^*</math>, here are multiple ways how the log-normal distribution can be parameterized. [[ProbOnto]], the knowledge base and ontology of [[probability distribution]]s<ref>{{cite web | url = http://www.probonto.org | title = ProbOnto |access-date = 1 July 2017}}</ref><ref>{{cite journal | pmid = 27153608 | doi = 10.1093/bioinformatics/btw170 | pmc = 5013898 | volume = 32 | issue = 17 | pages = 2719–2721 | title = ProbOnto: ontology and knowledge base of probability distributions | year = 2016 | journal = Bioinformatics | last1 = Swat | first1 = MJ | last2 = Grenon | first2 = P | last3 = Wimalaratne | first3 = S}}</ref> lists seven such forms: [[File:LogNormal17.jpg|thumb|400px|Overview of parameterizations of the log-normal distributions.]] * {{math|LogNormal1(''μ'',''σ'')}} with [[mean]], {{math|''μ''}}, and [[standard deviation]], {{math|''σ''}}, both on the log-scale <ref name="Forbes">Forbes et al. Probability Distributions (2011), John Wiley & Sons, Inc.</ref> <math display="block">P(x;\boldsymbol\mu,\boldsymbol\sigma) = \frac{1}{x \sigma \sqrt{2 \pi}} \exp\left[-\frac{(\ln x - \mu)^2}{2 \sigma^2}\right]</math> * {{math|LogNormal2(''μ'',''υ'')}} with mean, {{math|''μ''}}, and variance, {{math|''υ''}}, both on the log-scale <math display="block">P(x;\boldsymbol\mu,\boldsymbol {v}) = \frac{1}{x \sqrt{v} \sqrt{2 \pi}} \exp\left[-\frac{(\ln x - \mu)^2}{2 v}\right]</math> * {{math|LogNormal3(''m'',''σ'')}} with [[median]], {{math|''m''}}, on the natural scale and standard deviation, {{math|''σ''}}, on the log-scale<ref name="Forbes" /> <math display="block">P(x;\boldsymbol m,\boldsymbol \sigma) =\frac{1}{x \sigma \sqrt{2 \pi}} \exp\left[-\frac{\ln^2(x/m)}{2 \sigma^2}\right]</math> * {{math|LogNormal4(''m'',cv)}} with median, {{math|''m''}}, and [[coefficient of variation]], {{math|cv}}, both on the natural scale <math display="block">P(x;\boldsymbol m,\boldsymbol {cv}) = \frac{1}{x \sqrt{\ln(cv^2+1)} \sqrt{2 \pi}} \exp\left[-\frac{\ln^2(x/m)}{2\ln(cv^2+1)}\right]</math> * {{math|LogNormal5(''μ'',''τ'')}} with mean, {{math|''μ''}}, and [[Precision (statistics)|precision]], {{math|''τ''}}, both on the log-scale<ref>Lunn, D. (2012). The BUGS book: a practical introduction to Bayesian analysis. Texts in statistical science. CRC Press.</ref> <math display="block">P(x;\boldsymbol\mu,\boldsymbol \tau) = \sqrt{\frac{\tau}{2 \pi}} \frac{1}{x} \exp\left[-\frac{\tau}{2}(\ln x-\mu)^2\right]</math> * {{math|LogNormal6(''m'',''σ<sub>g</sub>'')}} with median, {{math|''m''}}, and [[geometric standard deviation]], {{math|''σ<sub>g</sub>''}}, both on the natural scale<ref>{{cite journal | last1 = Limpert | first1 = E. | last2 = Stahel | first2 = W. A. | last3 = Abbt | first3 = M. | year = 2001 | title = Log-normal distributions across the sciences: Keys and clues | journal = BioScience | volume = 51 | issue = 5 | pages = 341–352 | doi = 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 | doi-access = free }}</ref> <math display="block"> P(x;\boldsymbol m,\boldsymbol {\sigma_g}) = \frac{1}{x \sqrt{2 \pi} \, \ln\sigma_g} \exp\left[-\frac{\ln^2(x/m)}{2 \ln^2(\sigma_g)}\right]</math> * {{math|LogNormal7(''μ<sub>N</sub>'',''σ<sub>N</sub>'')}} with mean, {{math|''μ<sub>N</sub>''}}, and standard deviation, {{math|''σ<sub>N</sub>''}}, both on the natural scale<ref>{{cite journal | last1 = Nyberg | first1 = J. | display-authors = etal | year = 2012 | title = PopED – An extended, parallelized, population optimal design tool | journal = Comput Methods Programs Biomed | volume = 108 | issue = 2 | pages = 789–805 | doi = 10.1016/j.cmpb.2012.05.005 | pmid = 22640817 }}</ref> <math display="block">P(x;\boldsymbol {\mu_N},\boldsymbol {\sigma_N}) = \frac{1}{x \sqrt{2 \pi \ln\left(1+\sigma_N^2/\mu_N^2\right)}} \exp\left[-\frac{\left( \ln x - \ln\frac{\mu_N}{\sqrt{1 + \sigma_N^2/\mu_N^2}}\right)^2}{2 \ln\left(1 + \frac{\sigma_N^2}{\mu_N^2}\right)}\right]</math> ==== Examples for re-parameterization ==== Consider the situation when one would like to run a model using two different optimal design tools, for example PFIM<ref>{{cite journal | last1 = Retout | first1 = S | last2 = Duffull | first2 = S | last3 = Mentré | first3 = F | year = 2001 | title = Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs | journal = Comp Meth Pro Biomed | volume = 65 | issue = 2 | pages = 141–151 | doi = 10.1016/S0169-2607(00)00117-6 | pmid = 11275334 }}</ref> and PopED.<ref>The PopED Development Team (2016). PopED Manual, Release version 2.13. Technical report, Uppsala University.</ref> The former supports the LN2, the latter LN7 parameterization, respectively. Therefore, the re-parameterization is required, otherwise the two tools would produce different results. For the transition <math>\operatorname{LN2}(\mu, v) \to \operatorname{LN7}(\mu_N, \sigma_N)</math> following formulas hold <math display="inline">\mu_N = \exp(\mu+v/2) </math> and <math display="inline">\sigma_N = \exp(\mu+v/2)\sqrt{\exp(v)-1}</math>. For the transition <math>\operatorname{LN7}(\mu_N, \sigma_N) \to \operatorname{LN2}(\mu, v)</math> following formulas hold <math display="inline">\mu = \ln \mu_N - \frac{1}{2} v </math> and <math display="inline"> v = \ln(1+\sigma_N^2/\mu_N^2)</math>. All remaining re-parameterisation formulas can be found in the specification document on the project website.<ref name="probontoWebsite">ProbOnto website, URL: http://probonto.org</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Log-normal distribution
(section)
Add topic