Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Latitude
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Parametric latitude (or reduced latitude){{anchor|Parametric latitude|Reduced latitude}}=== [[File:Ellipsoid reduced angle definition.svg|thumb|upright=0.9|right|Definition of the parametric latitude ({{mvar|β}}) on the ellipsoid]] The '''parametric latitude''' or '''reduced latitude''', {{mvar|β}}, is defined by the radius drawn from the centre of the ellipsoid to that point {{math|Q}} on the surrounding sphere (of radius {{mvar|a}}) which is the projection parallel to the Earth's axis of a point {{math|P}} on the ellipsoid at latitude {{mvar|ϕ}}. It was introduced by Legendre<ref name=legendre>{{cite journal|first=A. M. |last=Legendre |date=1806 |title=Analyse des triangles tracés sur la surface d'un sphéroïde |journal=Mém. Inst. Nat. Fr. |pages=130–161 |volume=1st semester}}</ref> and Bessel<ref name=bessel>{{cite journal|first=F. W. |last=Bessel |date=1825 |title=Über die Berechnung der geographischen Langen und Breiten aus geodatischen Vermessungen |journal=Astron. Nachr. |volume=4|issue=86 |pages=241–254 |doi=10.1002/asna.201011352|arxiv=0908.1824 |bibcode=2010AN....331..852K |s2cid=118760590 }}<br>'''Translation:''' {{cite journal|first1=C. F. F. |last1=Karney |first2=R. E. |last2=Deakin |title=The calculation of longitude and latitude from geodesic measurements |journal=Astron. Nachr. |volume=331|issue=8 |pages=852–861 |date=2010 |arxiv=0908.1824 |bibcode=1825AN......4..241B|doi=10.1002/asna.18260041601 |s2cid=118630614 }}</ref> who solved problems for geodesics on the ellipsoid by transforming them to an equivalent problem for spherical geodesics by using this smaller latitude. Bessel's notation, {{math|''u''(''ϕ'')}}, is also used in the current literature. The parametric latitude is related to the geodetic latitude by:<ref name=osborne/><ref name=rapp/> :<math>\beta(\phi) = \tan^{-1}\left(\sqrt{1 - e^2}\tan\phi\right) = \tan^{-1}\left((1 - f)\tan\phi\right)</math> The alternative name arises from the parameterization of the equation of the ellipse describing a meridian section. In terms of Cartesian coordinates {{mvar|p}}, the distance from the minor axis, and {{mvar|z}}, the distance above the equatorial plane, the equation of the [[ellipse]] is: :<math> \frac{p^2}{a^2} + \frac{z^2}{b^2} =1\, .</math> The Cartesian coordinates of the point are parameterized by :<math> p = a\cos\beta\,, \qquad z = b\sin\beta\,; </math> Cayley suggested the term ''parametric latitude'' because of the form of these equations.<ref name=cayley>{{cite journal|first=A. |last=Cayley |date=1870 |title=On the geodesic lines on an oblate spheroid |journal=Phil. Mag. |volume=40 |issue=4th ser |pages=329–340|doi=10.1080/14786447008640411 }}</ref> The parametric latitude is not used in the theory of map projections. Its most important application is in the theory of ellipsoid geodesics, ([[Vincenty's formulae|Vincenty]], Karney<ref name=Karney>{{cite journal|first=C. F. F. |last=Karney |date=2013 |title=Algorithms for geodesics |journal=Journal of Geodesy |volume=87|issue=1 |pages=43–55 |doi= 10.1007/s00190-012-0578-z|arxiv=1109.4448 |bibcode=2013JGeod..87...43K |s2cid=119310141 }}</ref>).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Latitude
(section)
Add topic