Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Laplace operator
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generalization=== The Laplacian of any [[tensor field]] <math>\mathbf{T}</math> ("tensor" includes scalar and vector) is defined as the [[divergence]] of the [[gradient]] of the tensor: <math display="block">\nabla ^2\mathbf{T} = (\nabla \cdot \nabla) \mathbf{T}.</math> For the special case where <math>\mathbf{T}</math> is a [[scalar (mathematics)|scalar]] (a tensor of degree zero), the [[Laplacian]] takes on the familiar form. If <math>\mathbf{T}</math> is a vector (a tensor of first degree), the gradient is a [[covariant derivative]] which results in a tensor of second degree, and the divergence of this is again a vector. The formula for the vector Laplacian above may be used to avoid tensor math and may be shown to be equivalent to the divergence of the [[Jacobian matrix]] shown below for the gradient of a vector: <math display="block">\nabla \mathbf{T}= (\nabla T_x, \nabla T_y, \nabla T_z) = \begin{bmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{bmatrix} , \text{ where } T_{uv} \equiv \frac{\partial T_u}{\partial v}.</math> And, in the same manner, a [[dot product]], which evaluates to a vector, of a vector by the gradient of another vector (a tensor of 2nd degree) can be seen as a product of matrices: <math display="block"> \mathbf{A} \cdot \nabla \mathbf{B} = \begin{bmatrix} A_x & A_y & A_z \end{bmatrix} \nabla \mathbf{B} = \begin{bmatrix} \mathbf{A} \cdot \nabla B_x & \mathbf{A} \cdot \nabla B_y & \mathbf{A} \cdot \nabla B_z \end{bmatrix}.</math> This identity is a coordinate dependent result, and is not general.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Laplace operator
(section)
Add topic