Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ion thruster
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Comparisons == {| class="wikitable sortable" |+ Test data of some ion thrusters |- ! Thruster ! Propellant ! data-sort-type=number | Input <br/>power (kW) ! [[Specific impulse|Specific <br>impulse]] (s) ! Thrust <br/>(mN) ! Thruster <br/>mass (kg) ! Notes |- | [[NASA Solar Technology Application Readiness|NSTAR]] | [[Xenon]] | 2.3 | {{val|1700}}–{{val|3300}}<ref>{{cite web|url=http://eccentric.mae.cornell.edu/Boydgroup/jbala/IonPropulsion.html|title=Ion Propulsion|archive-url=https://web.archive.org/web/19990222082331/http://eccentric.mae.cornell.edu/Boydgroup/jbala/IonPropulsion.html|archive-date=1999-02-22}}</ref> | 92 max.<ref name=ns20070928/> | 8.33 <ref>{{cite journal |vauthors= Polk J, Kakuda R, Anderson J, Brophy J, Rawlin V, Patterson M, Sovey J, Hamley J |date= 2001-01-08|title= Performance of the NSTAR ion propulsion system on the Deep Space One mission.|journal= 39th Aerospace Sciences Meeting and Exhibit|pages= 965|doi= 10.2514/6.2001-965|url= https://trs.jpl.nasa.gov/bitstream/handle/2014/12165/01-0061.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://trs.jpl.nasa.gov/bitstream/handle/2014/12165/01-0061.pdf |archive-date=2022-10-09 |url-status=live|access-date=2021-09-16}}</ref> |Used on the ''[[Deep Space 1]]'' and ''[[Dawn (spacecraft)|Dawn]]'' space probes. |- | [[PPS-1350]] Hall effect || Xenon || 1.5 || {{val|1660}} || 90 || 5.3 | |- | [[NEXT (ion thruster)|NEXT]]<ref name=ns20070928>{{cite news|last=Shiga|first=David|title=Next-generation ion engine sets new thrust record|url=https://www.newscientist.com/article/dn12709-nextgeneration-ion-engine-sets-new-thrust-record.html|access-date=2011-02-02|newspaper=NewScientist|date=2007-09-28}}</ref> | Xenon | 6.9<ref name='gizmag2013'>{{cite web|url=http://www.gizmag.com/next-ion-thruster-duration-record/28067/|title=NASA's NEXT ion thruster runs five and a half years nonstop to set new record|first=David |last=Szondy|access-date=June 26, 2013}}</ref> | {{val|4190}}<ref name='gizmag2013'/><ref name=IAC-08-C442>{{cite web|url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080047732_2008047267.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080047732_2008047267.pdf |archive-date=2022-10-09 |url-status=live|title=The NASA Evolutionary Xenon Thruster (NEXT): the next step for US deep space propulsion|first1=George R.|last1=Schmidt|first2=Michael J.|last2=Patterson|first3=Scott W.|last3=Benson}}</ref><ref name='2010 Qualification'>{{citation|first=Daniel A. |last=Herman|contribution=NASA's Evolutionary Xenon Thruster (NEXT) Project Qualifi cation Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg|title=57th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meeting|publisher=NASA - Glenn Research Center|place=Colorado Springs, Colorado, United States|date=3–7 May 2010|contribution-url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110000521.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110000521.pdf |archive-date=2022-10-09 |url-status=live|access-date=2014-03-08}} {{PD-notice}}</ref> |<!-- 327 ? -->236 max.<ref name=ns20070928/><ref name='2010 Qualification'/> |<13.5 <ref>{{cite journal |vauthors= Shastry R, Soulas G, Aulisio M, Schmidt G|date=2017-09-25 |title= Status of NASA's NEXT-C Ion Propulsion System Development Project|url= https://core.ac.uk/download/pdf/154737946.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://core.ac.uk/download/pdf/154737946.pdf |archive-date=2022-10-09 |url-status=live|journal= 68th International Astronautical Congress |access-date=2021-09-16}}</ref> | Used in [[Double Asteroid Redirection Test|DART mission.]] |- | [[Aerojet Rocketdyne#X3 Ion Thruster|X3]]<ref name='popularmechanics2017'>{{cite web|url=https://www.popularmechanics.com/space/moon-mars/news/a28754/new-ion-thruster-breaks-records-power-thrust/|title='Mars Engine' Shatters Records for Ion Propulsion|first=Jay |last=Bennett|date=24 October 2017 |access-date=May 30, 2021}}</ref> Hall effect | Xenon or [[krypton]]<ref name='espressoinsight2020'>{{cite web|url=https://espressoinsight.com/2020/11/25/x3-ion-thruster/|title='Deep Space Travel: X3 Ion Thruster 2021 update|date=Nov 25, 2020|access-date=May 30, 2021}}</ref> | 102<ref name='popularmechanics2017'/> | 1800–2650<ref name='umich2017'>{{cite web|url=https://pepl.engin.umich.edu/project/x3-nested-channel-hall-thruster/|title=X3 – Nested Channel Hall Thruster|access-date=May 30, 2021}}</ref> | {{val|5400}}<ref name='popularmechanics2017'/> | {{val|230}}<ref name='umich2017'/><ref name='popularmechanics2017'/> | |- | NEXIS<ref>[http://en.scientificcommons.org/20787584 An overview of the Nuclear Electric Xenon Ion System (NEXIS) program (2006)] {{Webarchive |url=https://web.archive.org/web/20110522122351/http://en.scientificcommons.org/20787584|date=2011-05-22}} 2006-02-10 (Polk, Jay E., Goebel, Don, Brophy, John R., Beatty, John, Monheiser, J., Giles, D.) Scientific Commons</ref> | Xenon | 20.5 | | | | |- | RIT 22<ref>[http://cs.astrium.eads.net/sp/SpacecraftPropulsion/Rita/RIT-22.html Astrium Radiofrequency Ion Thruster, Model RIT-22] EADS Astrium {{webarchive |url=https://web.archive.org/web/20090613015624/http://cs.astrium.eads.net/sp/SpacecraftPropulsion/Rita/RIT-22.html|date=June 13, 2009}}</ref> | Xenon | 5 | | | | |- | [[BHT-8000]]<ref>{{cite web|url=http://www.busek.com/index_htm_files/70000703%20BHT-8000%20Data%20Sheet%20Rev-.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.busek.com/index_htm_files/70000703%20BHT-8000%20Data%20Sheet%20Rev-.pdf |archive-date=2022-10-09 |url-status=live|title=BHT-8000 Busek Hall Effect Thruster}}</ref> | Xenon | 8 | {{val|2210}} | 449 | 25 | |- | Hall effect | Xenon | 75{{citation needed|date=August 2012}} | | | | |- | FEEP | [[Caesium|Liquid caesium]] | data-sort-value=0.0006 | 6×10<sup>−5</sup>–0.06 | {{val|6000}}–{{val|10000}}<ref name="JPP98"/> | 0.001–1<ref name="JPP98"/> | | |- | [[NPT30|NPT30-I2]] | [[Iodine]] | data-sort-value=0.055 | 0.034–0.066 <ref name=NPT30>{{cite journal| title = ''In-orbit demonstration of an iodine electric propulsion system''| year = 2021| doi = 10.1038/s41586-021-04015-y| last1 = Rafalskyi| first1 = Dmytro| last2 = Martínez| first2 = Javier Martínez| last3 = Habl| first3 = Lui| last4 = Zorzoli Rossi| first4 = Elena| last5 = Proynov| first5 = Plamen| last6 = Boré| first6 = Antoine| last7 = Baret| first7 = Thomas| last8 = Poyet| first8 = Antoine| last9 = Lafleur| first9 = Trevor| last10 = Dudin| first10 = Stanislav| last11 = Aanesland| first11 = Ane| journal = Nature| volume = 599| issue = 7885| pages = 411–415| pmid = 34789903| pmc = 8599014| bibcode = 2021Natur.599..411R}}</ref> | {{val|1000}}–{{val|2500}}<ref name=NPT30/> | 0.5–1.5<ref name=NPT30/> | 1.2 <!-- mass kg --> | |- |[[Starlink#v1.0 (operational)|Starlink Gen1]] Hall effect<ref name=":0">{{Cite web |date=February 26, 2023 |title=SpaceX on X: "Among other enhancements, V2 minis are equipped with new argon Hall thrusters for on orbit maneuvering Developed by SpaceX engineers, they have 2.4x the thrust and 1.5x the specific impulse of our first gen thrusters. This will also be the first time ever that argon Hall thrusters are operated in space Argon Hall thruster tech specs: - 170 mN thrust - 2500 s specific impulse - 50% total efficiency - 4.2 kW power - 2.1 kg mass - Center mounted cathode" |url=https://x.com/SpaceX/status/1629948869239873538?s=20 |url-status=live |archive-url=https://web.archive.org/web/20230301003229/https://twitter.com/SpaceX/status/1629948869239873538 |archive-date=March 1, 2023 |website=[[Twitter]]}}</ref> |[[Krypton]]<ref name=":0" /> | |~1667 |~70.83 | | |- |[[Starlink#v2.0 (initial deployment)|Starlink Gen2]] Hall effect<ref name=":0" /> |[[Argon]]<ref name=":0" /> |4.2<ref name=":0" /> |2500<ref name=":0" /> |170<ref name=":0" /> |2.1<ref name=":0" /> |Used in [[Starlink#v2.0 (initial deployment)|Starlink V2 mini]] satellites. |- | [[Advanced Electric Propulsion System|AEPS]]<ref name=AEPS>{{Cite journal|last=|first=|date= |title=Status of Advanced Electric Propulsion Systems for Exploration Missions |url=https://www.researchgate.net/publication/328997773|journal=Aerojet Rocketdyne |volume=|pages=|via=ResearchGate}}</ref> | Xenon | 13.3 | 2900 | 600 | 25 | To be used in [[Lunar Gateway]] [[Power and Propulsion Element|PPE module.]] |- | [[Qinetiq]] T6 | Xenon | 4,6 | 4300 | 145 | | Used in European-Japanese [[BepiColombo]].<ref>[http://erps.spacegrant.org/uploads/images/2015Presentations/IEPC-2015-132_ISTS-2015-b-132.pdf Qualification of the T6 Thruster for BepiColombo] {{Webarchive |url=https://web.archive.org/web/20160812075030/http://erps.spacegrant.org/uploads/images/2015Presentations/IEPC-2015-132_ISTS-2015-b-132.pdf|date=12 August 2016}} R. A. Lewis, J. Pérez Luna, N. Coombs. 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, 4–10 July 2015</ref><ref>[http://erps.spacegrant.org/uploads/images/2015Presentations/IEPC-2015-131_ISTS-2015-b-131.pdf QinetiQ's T6 and T5 Ion Thruster Electric Propulsion System Architectures and Performances] {{Webarchive|url=https://web.archive.org/web/20171215162142/http://erps.spacegrant.org/uploads/images/2015Presentations/IEPC-2015-131_ISTS-2015-b-131.pdf |date=15 December 2017 }} Mark Hutchins, Huw Simpson. 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, 4–10 July 2015</ref> |} {| class="wikitable sortable" |+ Experimental thrusters (no mission to date) |- ! Thruster ! Propellant ! data-sort-type=number | Input <br/>power (kW) ! [[Specific impulse|Specific <br/>impulse]] (s) ! Thrust <br/>(mN) ! Thruster <br/>mass (kg) ! Notes |- | Hall effect | [[Bismuth]] | 1.9<ref name=Bi-Szabo>Szabo, J., Robin, M., Paintal, Pote, B., S., Hruby, V., "High Density Hall Thruster Propellant Investigations", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2012-3853, July 2012.</ref> | {{val|1520}} (anode)<ref name=Bi-Szabo/> | 143 (discharge)<ref name=Bi-Szabo/> | | |- | Hall effect | Bismuth | 25{{citation needed|date=August 2012}} | | | | |- | Hall effect | Bismuth | 140{{citation needed|date=August 2012}} | | | | |- | Hall effect | [[Iodine]] | 0.2<ref name=I2-Szabo>{{cite journal |last1=Szabo|first1=J. |last2=Pote|first2=B. |last3=Paintal|first3=S. |last4=Robin|first4=M. |last5=Hillier|first5=A. |last6=Branam|first6=R. |last7=Huffman|first7=R. |title=Performance Evaluation of an Iodine Vapor Hall Thruster |journal=Journal of Propulsion and Power|volume=28|issue=4|pages=848–857|doi=10.2514/1.B34291|year=2012}}</ref> | {{val|1510}} (anode)<ref name=I2-Szabo/> | 12.1 (discharge)<ref name=I2-Szabo/> | | |- | Hall effect | Iodine | 7<ref name="I2_hp-Szabo">{{cite journal |last1=Szabo |first1=J. |last2=Robin |first2=M. |last3=Paintal |first3=S. |last4=Pote |first4=B. |last5=Hruby |first5=V. |last6=Freeman |first6=C. |year=2015 |title=Iodine Plasma Propulsion Test Results at 1–10 kW |journal=IEEE Transactions on Plasma Science |volume=43 |issue=1 |pages=141–148 |bibcode=2015ITPS...43..141S |doi=10.1109/TPS.2014.2367417 |s2cid=42482511}}</ref> | {{val|1950}}<ref name=I2_hp-Szabo/> | 413<ref name=I2_hp-Szabo/> | | |- | [[HiPEP]] | Xenon | 20–50<ref name=hipepinfo/> | {{val|6000}}–{{val|9000}}<ref name=hipepinfo>{{cite web|title=High Power Electric Propulsion Program (HiPEP)|url=http://www.grc.nasa.gov/WWW/ion/present/hipep.htm|archive-url=https://web.archive.org/web/20090305101503/http://www.grc.nasa.gov/WWW/ion/present/hipep.htm|archive-date=2009-03-05|publisher=[[NASA]]|url-status=dead|date=2008-12-22}} {{PD-notice}}</ref> | 460–670<ref name=hipepinfo/> | | |- | [[Magnetoplasmadynamic thruster|MPDT]] | [[Hydrogen]] | {{val|1500}}<ref name="MPDT">{{cite web|url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880020476.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880020476.pdf |archive-date=2022-10-09 |url-status=live|title=Performance and Lifetime Assessment of MPD Arc Thruster Technology|access-date=2019-05-09|author=James S. Sovey and Maris A. Mantenieks|date=January 1988 |page=11}} {{PD-notice}}</ref> | {{val|4900}}<ref name="MPDT"/> | {{val|26300}}{{citation needed|date=August 2012}} | | |- | [[Magnetoplasmadynamic thruster|MPDT]] | Hydrogen | {{val|3750}}<ref name="MPDT"/> | {{val|3500}}<ref name="MPDT"/> | {{val|88500}}{{citation needed|date=August 2012}} | | |- | [[Magnetoplasmadynamic thruster|MPDT]] | Hydrogen | {{val|7500}}{{citation needed|date=August 2012}} | {{val|6000}}{{citation needed|date=August 2012}} | {{val|60000}}{{citation needed|date=August 2012}} | | |- | LiLFA | Lithium vapor | 500 | {{val|4077}}{{citation needed|date=August 2012}} | {{val|12000}}{{citation needed|date=August 2012}} | | |- | FEEP | Liquid caesium | data-sort-value=0.0006 | 6×10<sup>−5</sup>–0.06 | {{val|6000}}–{{val|10000}}<ref name="JPP98"/> | 0.001–1<ref name="JPP98"/> | | |- | [[VASIMR]] | [[Argon]] | 200 | {{val|3000}}–{{val|12000}}<!-- the fiso20110119 source shows 5000 to be about the optimum Isp, but has no data on the min/max Isp. --> | [[Approximation|Approximately]] {{val|5000}}<ref name=fiso20110119>[http://spirit.as.utexas.edu/~fiso/telecon/Glover_1-19-11/Glover_1-19-11.pdf VASIMR VX-200 Performance and Near-term SEP Capability for Unmanned Mars Flight] {{Webarchive|url=https://web.archive.org/web/20110311141639/http://spirit.as.utexas.edu/%7Efiso/telecon/Glover_1-19-11/Glover_1-19-11.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://spirit.as.utexas.edu/%7Efiso/telecon/Glover_1-19-11/Glover_1-19-11.pdf |archive-date=2022-10-09 |url-status=live|date=2011-03-11}}, Tim Glover, Future in Space Operations (FISO) Colloquium, 2011-01-19, accessed 2011-01-31.</ref> | 620<ref>{{cite web|url=http://www.adastrarocket.com/IEPC13-149_JPSquire_submit.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.adastrarocket.com/IEPC13-149_JPSquire_submit.pdf |archive-date=2022-10-09 |url-status=live|title=VASIMR® Spaceflight Engine System Mass Study and Scaling with Power IEPC-2013-149}}</ref> | |- | CAT<ref name="CAT_thruster_Space">{{cite news|last1=Mike Wall|title=New Space Engine Could Turn Tiny CubeSats into Interplanetary Explorers|url=http://www.space.com/21867-cubesat-deep-space-propulsion-kickstarter.html|access-date=June 25, 2015|website=[[Space.com]]|publisher=[[Purch]]|date=July 8, 2013}}</ref> | Xenon, iodine, water<ref name="CAT_thruster_PEPL">{{cite web|title=PEPL Thrusters: CubeSat Ambipolar Thruster|url=http://pepl.engin.umich.edu/thrusters/CAT.html|website=pepl.engin.umich.edu|publisher=University of Michigan|access-date=June 25, 2015|archive-date=12 May 2015|archive-url=https://web.archive.org/web/20150512105036/http://pepl.engin.umich.edu/thrusters/CAT.html|url-status=dead}}</ref> | 0.01 | 690<ref name="MARS-CAT">{{cite web|title=MARS-CAT Mission Implementation|url=http://www.marscat.space/science/implementation|archive-url=https://web.archive.org/web/20150626112412/http://www.marscat.space/science/implementation|url-status=dead|archive-date=26 June 2015|website=marscat.space|publisher=University of Houston College of Natural Sciences and Mathematics|access-date=June 25, 2015}}</ref><ref name="P4_RF_Thruster">{{cite web|title=Phase Four: Game-Changing Spacecraft propulsion|url=http://www.phasefour.io|website=phasefour.io|access-date=June 5, 2017}}</ref> | 1.1–2 (73 mN/kW)<ref name="CAT_thruster_PEPL"/> | <1<ref name="CAT_thruster_PEPL"/> | |- | [[Dual-Stage 4-Grid|DS4G]] | Xenon | 250 | {{val|19300}} | {{val|2500}} max. | 5 | |- | [[Krypton Large Impulse Thruster|KLIMT]] | [[Krypton]] | 0.5<ref name=ifpilm>{{cite web |url=http://www.ifpilm.pl/ifpilm.pl/en/achievements/87-krypton-hall-effect-thruster-for-space-propulsion |title=Krypton Hall effect thruster for space propulsion |archive-url=https://archive.today/20140129162249/http://www.ifpilm.pl/ifpilm.pl/en/achievements/87-krypton-hall-effect-thruster-for-space-propulsion |archive-date=2014-01-29 |work=IFPiLM.pl |access-date=2014-01-29}}</ref> | | | 4<ref name=ifpilm/> | |- | ID-500 | Xenon<ref>{{Cite web|date=29 January 2020|title=Transport and Energy Module: Russia's new NEP Tug|url=https://beyondnerva.com/2020/01/29/transport-and-energy-module/|website=Beyond NERVA|access-date=16 November 2020|archive-date=27 November 2020|archive-url=https://web.archive.org/web/20201127160913/http://beyondnerva.com/2020/01/29/transport-and-energy-module/|url-status=dead}}</ref> | 32–35 | 7140 | 375–750<ref>{{Cite web|last=Teslenko|first=Vladimir|date=31 August 2015|title=Space nuclear propulsion systems are now possible only in Russia (In Russian)|url=https://www.kommersant.ru/doc/2810188|website=Kommersant}}</ref> |34.8 | To be used in [[TEM (nuclear propulsion)|TEM]] |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ion thruster
(section)
Add topic