Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Inner product space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Orthogonality=== {{glossary}} {{term|[[Orthogonality (mathematics)|Orthogonality]]}}{{defn| Two vectors <math>x</math> and <math>y</math> are said to be {{em|{{visible anchor|orthogonal|Orthogonal vectors}}}}, often written <math>x \perp y,</math> if their inner product is zero, that is, if <math>\langle x, y \rangle = 0.</math> <br> This happens if and only if <math>\|x\| \leq \|x + s y\|</math> for all scalars <math>s,</math>{{sfn|Rudin|1991|pp=306-312}} and if and only if the real-valued function <math>f(s) := \|x + s y\|^2 - \|x\|^2</math> is non-negative. (This is a consequence of the fact that, if <math>y \neq 0</math> then the scalar <math>s_0 = - \tfrac{\overline{\langle x, y \rangle}}{\|y\|^2}</math> minimizes <math>f</math> with value <math>f\left(s_0\right) = - \tfrac{|\langle x, y \rangle|^2}{\|y\|^2},</math> which is always non positive).<br> For a {{em|complex}} inner product space <math>H,</math> a linear operator <math>T : V \to V</math> is identically <math>0</math> if and only if <math>x \perp T x</math> for every <math>x \in V.</math>{{sfn|Rudin|1991|pp=306-312}} This is not true in general for real inner product spaces, as it is a consequence of conjugate symmetry being distinct from symmetry for complex inner products. A counterexample in a real inner product space is <math>T</math> a 90° rotation in <math>\mathbb{R}^2</math>, which maps every vector to an orthogonal vector but is not identically <math>0</math>. }} {{term|[[Orthogonal complement]]}}{{defn|The ''orthogonal complement'' of a subset <math>C \subseteq V</math> is the set <math>C^{\bot}</math> of the vectors that are orthogonal to all elements of {{mvar|C}}; that is, <math display=block>C^{\bot} := \{\,y \in V : \langle y, c \rangle = 0 \text{ for all } c \in C\,\}.</math> This set <math>C^{\bot}</math> is always a closed vector subspace of <math>V</math> and if the [[Closure (topology)|closure]] <math>\operatorname{cl}_V C</math> of <math>C</math> in <math>V</math> is a vector subspace then <math>\operatorname{cl}_V C = \left(C^{\bot}\right)^{\bot}.</math> }} {{term|[[Pythagorean theorem]]}}{{defn| If <math>x</math> and <math>y</math> are orthogonal, then <math display=block>\|x\|^2 + \|y\|^2 = \|x + y\|^2.</math> This may be proved by expressing the squared norms in terms of the inner products, using additivity for expanding the right-hand side of the equation.<br> The name {{em|Pythagorean theorem}} arises from the geometric interpretation in [[Euclidean geometry]]. }} {{term|[[Parseval's identity]]}}{{defn| An [[Mathematical induction|induction]] on the Pythagorean theorem yields: if <math>x_1, \ldots, x_n</math> are pairwise orthogonal, then <math display=block>\sum_{i=1}^n \|x_i\|^2 = \left\|\sum_{i=1}^n x_i\right\|^2.</math> }} {{anchor|Angle}}{{term|[[Angle]]}}{{defn| When <math>\langle x, y \rangle</math> is a real number then the Cauchy–Schwarz inequality implies that <math display=inline>\frac{\langle x, y \rangle}{\|x\| \, \|y\|} \in [-1, 1],</math> and thus that <math display=block>\angle(x, y) = \arccos \frac{\langle x, y \rangle}{\|x\| \, \|y\|},</math> is a real number. This allows defining the (non oriented) {{em|angle}} of two vectors in modern definitions of [[Euclidean geometry]] in terms of [[linear algebra]]. This is also used in [[data analysis]], under the name "[[cosine similarity]]", for comparing two vectors of data. Furthermore, if <math>\langle x, y \rangle</math> is negative, the angle <math>\angle(x, y)</math> is larger than 90 degrees. This property is often used in computer graphics (e.g., in [[back-face culling]]) to analyze a direction without having to evaluate [[trigonometric functions]].}} {{glossary end}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Inner product space
(section)
Add topic