Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Frequency modulation synthesis
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Spectral analysis == [[File:DemoFMfreq.wav|thumb|2-operator demonstration: if the frequency of the modulator is lower than that of the carrier, the output note will be that of the modulator.]] There are multiple variations of FM synthesis, including: *Various operator arrangements (known as "FM Algorithms" in Yamaha terminology) **2 operators **Serial FM (multiple stages) **Parallel FM (multiple modulators, multiple-carriers), **Mix of them *Various waveform of operators **Sinusoidal waveform **Other waveforms *Additional modulation **Linear FM **Exponential FM (preceded by the [[anti-logarithm]] conversion for CV/oct. interface of analog synthesizers) **[[Oscillator sync]] with FM ''etc''. As the basic of these variations, we analyze the spectrum of 2 operators (linear FM synthesis using two sinusoidal operators) on the following. === 2 operators === The spectrum generated by FM synthesis with one modulator is expressed as follows:<ref>{{harvnb|Chowning|1973|pp=1β2}}</ref><ref> {{cite web | last = Doering | first = Ed | title = Frequency Modulation Mathematics | url = http://cnx.org/content/m15482/latest/ | access-date = 2013-04-11 }}</ref> For modulation signal <math>m(t) = B\,\sin(\omega_m t)\,</math>, the carrier signal is:<ref group="note">Note that modulation signal <math>m(t)</math> as [[instantaneous frequency]] is converted to the [[phase (waves)|phase]] of carrier signal <math>FM(t)</math>, by time integral between <math>[0, t]</math>.</ref> :<math>\begin{align} FM(t) & \ =\ A\,\sin\left(\,\int_0^t \left(\omega_c + B\,\sin(\omega_m\,\tau)\right)d\tau\right) \\ & \ =\ A\,\sin\left(\omega_c\,t - \frac{B}{\omega_m}\left(\cos(\omega_m\,t) - 1\right)\right) \\ & \ =\ A\,\sin\left(\omega_c\,t + \frac{B}{\omega_m}\left(\sin(\omega_m\,t - \pi/2) + 1\right)\right) \\ \end{align}</math> If we were to ignore the constant phase terms on the carrier <math>\phi_c = B/\omega_m\,</math> and the modulator <math>\phi_m = - \pi/2\,</math>, finally we would get the following expression, as seen on {{harvnb|Chowning|1973}} and {{harvnb|Roads|1996|p=[https://books.google.com/books?id=nZ-TetwzVcIC&&pg=PA232 232]}}: :<math>\begin{align} FM(t) & \ \approx\ A\,\sin\left(\omega_c\,t + \beta\,\sin(\omega_m\,t)\right) \\ & \ =\ A\left( J_0(\beta) \sin(\omega_c\,t) + \sum_{n=1}^{\infty} J_n(\beta)\left[\,\sin((\omega_c+n\,\omega_m)\,t)\ +\ (-1)^{n}\sin((\omega_c-n\,\omega_m)\,t)\,\right] \right) \\ & \ =\ A\sum_{n=-\infty}^{\infty} J_n(\beta)\,\sin((\omega_c+n\,\omega_m)\,t) \end{align}</math> where <math>\omega_c\,,\,\omega_m\,</math> are [[angular frequency|angular frequencies]] (<math>\,\omega = 2\pi f\,</math>) of carrier and modulator, <math>\beta = B / \omega_m\,</math> is [[frequency modulation#Modulation index|frequency modulation index]], and [[amplitude]]s <math>J_n(\beta)\,</math> is <math>n\,</math>-th [[Bessel function#Bessel functions of the first kind : JΞ±|Bessel function of first kind]], respectively.<ref group="note">The above expression is transformed using [[List of trigonometric identities#Angle sum and difference identities|trigonometric addition formulas]] : <math>\begin{align} \sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y \end{align}</math> and a lemma of Bessel function : <math>\begin{align} \cos(\beta\sin \theta) & = J_0(\beta) + 2\sum_{n=1}^{\infty}J_{2n}(\beta)\cos(2n\theta) \\ \sin(\beta\sin \theta) & = 2\sum_{n=0}^{\infty}J_{2n+1}(\beta)\sin((2n+1)\theta) \end{align}</math> : ('''Source''': {{harvnb|Kreh|2012}}) as following: : <math>\begin{align} & \sin\left(\theta_c + \beta\,\sin(\theta_m)\right) \\ & \ =\ \sin(\theta_c)\cos(\beta\sin(\theta_m)) + \cos(\theta_c)\sin(\beta\sin(\theta_m)) \\ & \ =\ \sin(\theta_c)\left[J_0(\beta) + 2\sum_{n=1}^{\infty}J_{2n}(\beta)\cos(2n \theta_m)\right] + \cos(\theta_c)\left[2\sum_{n=0}^{\infty}J_{2n+1}(\beta)\sin((2n+1)\theta_m)\right] \\ & \ =\ J_0(\beta) \sin(\theta_c) + J_1(\beta) 2\cos(\theta_c)\sin(\theta_m) + J_2(\beta) 2\sin(\theta_c)\cos(2\theta_m) + J_3(\beta) 2\cos(\theta_c)\sin(3\theta_m) + ... \\ & \ =\ J_0(\beta) \sin(\theta_c) + \sum_{n=1}^{\infty} J_n(\beta)\left[\,\sin(\theta_c + n\theta_m)\ +\ (-1)^{n}\sin(\theta_c - n\theta_m)\,\right] \\ & \ =\ \sum_{n=-\infty}^{\infty} J_n(\beta)\,\sin(\theta_c + n\theta_m)\qquad(\because\ J_{-n}(x) = (-1)^n J_{n}(x)) \end{align}</math></ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Frequency modulation synthesis
(section)
Add topic