Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Expected value
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Expectations under convergence of random variables=== In general, it is not the case that <math>\operatorname{E}[X_n] \to \operatorname{E}[X]</math> even if <math>X_n\to X</math> pointwise. Thus, one cannot interchange limits and expectation, without additional conditions on the random variables. To see this, let <math>U</math> be a random variable distributed uniformly on <math>[0,1].</math> For <math>n\geq 1,</math> define a sequence of random variables <math display="block">X_n = n \cdot \mathbf{1}\left\{ U \in \left(0,\tfrac{1}{n}\right)\right\},</math> with <math>\mathbf{1}\{A\}</math> being the indicator function of the event <math>A.</math> Then, it follows that <math>X_n \to 0</math> pointwise. But, <math>\operatorname{E}[X_n] = n \cdot \Pr\left(U \in \left[ 0, \tfrac{1}{n}\right] \right) = n \cdot \tfrac{1}{n} = 1</math> for each <math>n.</math> Hence, <math>\lim_{n \to \infty} \operatorname{E}[X_n] = 1 \neq 0 = \operatorname{E}\left[ \lim_{n \to \infty} X_n \right].</math> Analogously, for general sequence of random variables <math>\{ Y_n : n \geq 0\},</math> the expected value operator is not <math>\sigma</math>-additive, i.e. <math display="block">\operatorname{E}\left[\sum^\infty_{n=0} Y_n\right] \neq \sum^\infty_{n=0}\operatorname{E}[Y_n].</math> An example is easily obtained by setting <math>Y_0 = X_1</math> and <math>Y_n = X_{n+1} - X_n</math> for <math>n \geq 1,</math> where <math>X_n</math> is as in the previous example. A number of convergence results specify exact conditions which allow one to interchange limits and expectations, as specified below. * [[Monotone convergence theorem]]: Let <math>\{X_n : n \geq 0\}</math> be a sequence of random variables, with <math>0 \leq X_n \leq X_{n+1}</math> (a.s) for each <math>n \geq 0.</math> Furthermore, let <math>X_n \to X</math> pointwise. Then, the monotone convergence theorem states that <math>\lim_n\operatorname{E}[X_n]=\operatorname{E}[X].</math> {{pb}} Using the monotone convergence theorem, one can show that expectation indeed satisfies countable additivity for non-negative random variables. In particular, let <math>\{X_i\}_{i=0}^\infty</math> be non-negative random variables. It follows from the [[monotone convergence theorem]] that <math display="block"> \operatorname{E}\left[\sum^\infty_{i=0}X_i\right] = \sum^\infty_{i=0}\operatorname{E}[X_i]. </math> * [[Fatou's lemma]]: Let <math>\{ X_n \geq 0 : n \geq 0\}</math> be a sequence of non-negative random variables. Fatou's lemma states that <math display="block">\operatorname{E}[\liminf_n X_n] \leq \liminf_n \operatorname{E}[X_n].</math> {{pb}} '''Corollary.''' Let <math>X_n \geq 0</math> with <math>\operatorname{E}[X_n] \leq C</math> for all <math>n \geq 0.</math> If <math>X_n \to X</math> (a.s), then <math>\operatorname{E}[X] \leq C.</math> {{pb}} '''Proof''' is by observing that <math display="inline"> X = \liminf_n X_n</math> (a.s.) and applying Fatou's lemma. * [[Dominated convergence theorem]]: Let <math>\{X_n : n \geq 0 \}</math> be a sequence of random variables. If <math>X_n\to X</math> [[pointwise convergence|pointwise]] (a.s.), <math>|X_n|\leq Y \leq +\infty</math> (a.s.), and <math>\operatorname{E}[Y]<\infty.</math> Then, according to the dominated convergence theorem, ** <math>\operatorname{E}|X| \leq \operatorname{E}[Y] <\infty</math>; ** <math>\lim_n\operatorname{E}[X_n]=\operatorname{E}[X]</math> ** <math>\lim_n\operatorname{E}|X_n - X| = 0.</math> * [[Uniform integrability]]: In some cases, the equality <math>\lim_n\operatorname{E}[X_n]=\operatorname{E}[\lim_n X_n]</math> holds when the sequence <math>\{X_n\}</math> is ''uniformly integrable.''
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Expected value
(section)
Add topic