Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euclidean vector
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Scalar multiplication=== {{main|Scalar multiplication}} [[Image:Scalar multiplication by r=3.svg|class=skin-invert-image|250px|thumb|right|Scalar multiplication of a vector by a factor of 3 stretches the vector out.]] A vector may also be multiplied, or re-''scaled'', by any [[real number]] ''r''. In the context of [[vector analysis|conventional vector algebra]], these real numbers are often called '''scalars''' (from ''scale'') to distinguish them from vectors. The operation of multiplying a vector by a scalar is called ''scalar multiplication''. The resulting vector is <math display=block>r\mathbf{a}=(ra_1)\mathbf{e}_1 +(ra_2)\mathbf{e}_2 +(ra_3)\mathbf{e}_3.</math> Intuitively, multiplying by a scalar ''r'' stretches a vector out by a factor of ''r''. Geometrically, this can be visualized (at least in the case when ''r'' is an integer) as placing ''r'' copies of the vector in a line where the endpoint of one vector is the initial point of the next vector. If ''r'' is negative, then the vector changes direction: it flips around by an angle of 180Β°. Two examples (''r'' = β1 and ''r'' = 2) are given below: [[Image:Scalar multiplication of vectors2.svg|class=skin-invert-image|250px|thumb|left|The scalar multiplications β'''a''' and 2'''a''' of a vector '''a''']] Scalar multiplication is [[Distributivity|distributive]] over vector addition in the following sense: ''r''('''a''' + '''b''') = ''r'''''a''' + ''r'''''b''' for all vectors '''a''' and '''b''' and all scalars ''r''. One can also show that '''a''' β '''b''' = '''a''' + (β1)'''b'''. <!-- The set of all geometrical vectors, together with the operations of vector addition and scalar multiplication, satisfies all the axioms of a [[vector space]]. Similarly, the set of all bound vectors with a common base point forms a vector space. This is where the term "vector space" originated. --> {{clear}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euclidean vector
(section)
Add topic