Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Elo rating system
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Formal derivation for win/loss games === The above expressions can be now formally derived by exploiting the link between the Elo rating and the stochastic gradient update in the logistic regression.<ref>{{Cite arXiv |last1=Kiraly |first1=F. |last2=Qian |first2=Z. |date=2017 |title=Modelling Competitive Sports: Bradley-Terry-Elo Models for Supervised and On-Line Learning of Paired Competition Outcomes |class=stat.ML |eprint=1701.08055 }}</ref><ref name=":0">{{Cite journal |last1=Szczecinski |first1=Leszek |last2=Djebbi |first2=Aymen |date=2020-09-01 |title=Understanding draws in Elo rating algorithm |url=https://www.degruyter.com/document/doi/10.1515/jqas-2019-0102/html?lang=en |journal=Journal of Quantitative Analysis in Sports |language=en |volume=16 |issue=3 |pages=211β220 |doi=10.1515/jqas-2019-0102 |s2cid=219784913 |issn=1559-0410}}</ref> If we assume that the game results are [[Binary random variable|binary]], that is, only a win or a loss can be observed, the problem can be addressed via [[logistic regression]], where the games results are [[Dependent and independent variables|dependent variables]], the players' ratings are [[Dependent and independent variables|independent variables]], and the model relating both is probabilistic: the probability of the player <math>\mathsf{A}</math> winning the game is modeled as :<math> \Pr\{\mathsf{A}~\textrm{wins}\} = \sigma(r_{\mathsf{A,B}}), \quad \sigma(r)=\frac 1 {1 + 10^{-r/s}}, </math> where :<math> r_{\mathsf{A,B}} = (R_\mathsf{A} - R_\mathsf{B}) </math> denotes the difference of the players' ratings, and we use a scaling factor <math>s=400</math>, and, by [[law of total probability]] :<math> \Pr\{\mathsf{B}~\textrm{wins}\} = 1-\sigma(r_{\mathsf{A,B}})=\sigma(-r_{\mathsf{A,B}}). </math> The [[log loss]] is then calculated as :<math> \ell = \begin{cases} -\log \sigma(r_\mathsf{A,B}) & \textrm{if}~ \mathsf{A}~\textrm{wins},\\ -\log \sigma(-r_\mathsf{A,B}) & \textrm{if}~ \mathsf{B}~\textrm{wins}, \end{cases}</math> and, using the [[stochastic gradient descent]] the log loss is minimized as follows: :<math> R_{\mathsf{A}}\leftarrow R_{\mathsf{A}} - \eta \frac{\textrm{d}\ell}{\textrm{d} R_{\mathsf{A}}}</math>, :<math> R_{\mathsf{B}}\leftarrow R_{\mathsf{B}} - \eta \frac{\textrm{d}\ell}{\textrm{d} R_{\mathsf{B}}}</math>. where <math>\eta</math> is the adaptation step. Since <math> \frac{\textrm{d}}{\textrm{d} r}\log\sigma(r)=\frac{\log 10}{s}\sigma(-r)</math>, <math> \frac{\textrm{d} r_{\mathsf{A,B}}}{\textrm{d} R_{\mathsf{A}}}=1</math>, and <math> \frac{\textrm{d} r_{\mathsf{A,B}}}{\textrm{d} R_{\mathsf{B}}}=-1</math>, the adaptation is then written as follows :<math> R_{\mathsf{A}}\leftarrow \begin{cases} R_{\mathsf{A}} + K \sigma(-r_{\mathsf{A,B}}) & \textrm{if}~\mathsf{A}~\textrm{wins}\\ R_{\mathsf{A}} - K \sigma(r_{\mathsf{A,B}}) & \textrm{if}~\mathsf{B}~\textrm{wins}, \end{cases}</math> which may be compactly written as :<math> R_{\mathsf{A}}\leftarrow R_{\mathsf{A}} + K (S_{\mathsf{A}}-E_{\mathsf{A}})</math> where <math> K=\eta\log10/s</math> is the new adaptation step which absorbs <math> \eta</math> and <math> s</math>, <math> S_{\mathsf{A}}=1</math> if <math> \mathsf{A}</math> wins and <math> S_{\mathsf{A}}=0</math> if <math> \mathsf{B}</math> wins, and the expected score is given by <math> E_{\mathsf{A}}=\sigma(r_{\mathsf{A,B}})</math>. Analogously, the update for the rating <math> R_{\mathsf{B}}</math> is :<math> R_{\mathsf{B}}\leftarrow R_{\mathsf{B}} + K (S_{\mathsf{B}}-E_{\mathsf{B}})</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Elo rating system
(section)
Add topic