Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cross product
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Lagrange's identity === The relation :<math> \left\| \mathbf{a} \times \mathbf{b} \right\|^2 \equiv \det \begin{bmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} \\ \mathbf{a} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{b}\\ \end{bmatrix} \equiv \left\| \mathbf{a} \right\| ^2 \left\| \mathbf{b} \right\| ^2 - (\mathbf{a} \cdot \mathbf{b})^2 </math> can be compared with another relation involving the right-hand side, namely [[Lagrange's identity]] expressed as<ref name=Boichenko>{{cite book |title=Dimension theory for ordinary differential equations |author1=Vladimir A. Boichenko |author2=Gennadiĭ Alekseevich Leonov |author3=Volker Reitmann |url=https://books.google.com/books?id=9bN1-b_dSYsC&pg=PA26 |page=26 |isbn=3-519-00437-2 |year=2005 |publisher=Vieweg+Teubner Verlag}}</ref> :<math> \sum_{1 \le i < j \le n} \left( a_ib_j - a_jb_i \right)^2 \equiv \left\| \mathbf a \right\|^2 \left\| \mathbf b \right\|^2 - ( \mathbf{a \cdot b } )^2, </math> where '''a''' and '''b''' may be ''n''-dimensional vectors. This also shows that the [[Riemannian volume form]] for surfaces is exactly the [[Volume form|surface element]] from vector calculus. In the case where {{nowrap|1=''n'' = 3}}, combining these two equations results in the expression for the magnitude of the cross product in terms of its components:<ref name=Lounesto1>{{cite book |url=https://books.google.com/books?id=kOsybQWDK4oC&q=%22which+in+coordinate+form+means+Lagrange%27s+identity%22&pg=PA94 |author=Pertti Lounesto |page=94 |title=Clifford algebras and spinors |isbn=0-521-00551-5 |edition=2nd |publisher=Cambridge University Press |year=2001}}</ref> :<math>\begin{align} \|\mathbf{a} \times \mathbf{b}\|^2 &\equiv \sum_{1 \le i < j \le 3} (a_ib_j - a_jb_i)^2 \\ &\equiv (a_1 b_2 - b_1 a_2)^2 + (a_2 b_3 - a_3 b_2)^2 + (a_3 b_1 - a_1 b_3)^2. \end{align}</math> The same result is found directly using the components of the cross product found from :<math>\mathbf{a} \times \mathbf{b} \equiv \det \begin{bmatrix} \hat\mathbf{i} & \hat\mathbf{j} & \hat\mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{bmatrix}.</math> In '''R'''<sup>3</sup>, Lagrange's equation is a special case of the multiplicativity {{nowrap|1={{abs|'''vw'''}} = {{abs|'''v'''}}{{abs|'''w'''}}}} of the norm in the [[Quaternion#Algebraic properties|quaternion algebra]]. It is a special case of another formula, also sometimes called Lagrange's identity, which is the three dimensional case of the [[Binet–Cauchy identity]]:<ref name=Liu/><ref name=Weisstein>by {{cite book |author=Eric W. Weisstein |chapter=Binet-Cauchy identity |title=CRC concise encyclopedia of mathematics |chapter-url=https://books.google.com/books?id=8LmCzWQYh_UC&pg=PA228 |page=228 |isbn=1-58488-347-2 |edition=2nd |year=2003 |publisher=CRC Press}}</ref> :<math> (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) \equiv (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}). </math> If {{nowrap|1='''a''' = '''c'''}} and {{nowrap|1='''b''' = '''d'''}}, this simplifies to the formula above.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cross product
(section)
Add topic