Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Computational complexity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Use in algorithm design== Evaluating the complexity of an algorithm is an important part of [[algorithm design]], as this gives useful information on the performance that may be expected. It is a common misconception that the evaluation of the complexity of algorithms will become less important as a result of [[Moore's law]], which posits the [[exponential growth]] of the power of modern [[computer]]s. This is wrong because this power increase allows working with large input data ([[big data]]). For example, when one wants to sort alphabetically a list of a few hundreds of entries, such as the [[bibliography]] of a book, any algorithm should work well in less than a second. On the other hand, for a list of a million of entries (the phone numbers of a large town, for example), the elementary algorithms that require <math>O(n^2)</math> comparisons would have to do a trillion of comparisons, which would need around three hours at the speed of 10 million of comparisons per second. On the other hand, the [[quicksort]] and [[merge sort]] require only <math>n\log_2 n</math> comparisons (as average-case complexity for the former, as worst-case complexity for the latter). For {{math|1=''n'' = 1,000,000}}, this gives approximately 30,000,000 comparisons, which would only take 3 seconds at 10 million comparisons per second. Thus the evaluation of the complexity may allow eliminating many inefficient algorithms before any implementation. This may also be used for tuning complex algorithms without testing all variants. By determining the most costly steps of a complex algorithm, the study of complexity allows also focusing on these steps the effort for improving the efficiency of an implementation.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Computational complexity
(section)
Add topic