Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Communication complexity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Open problems == Considering a 0 or 1 input matrix <math>M_f=[f(x,y)]_{x,y\in \{0,1\}^n}</math>, the minimum number of bits exchanged to compute <math>f</math> deterministically in the worst case, <math>D(f)</math>, is known to be bounded from below by the logarithm of the [[Rank (linear algebra)|rank]] of the matrix <math>M_f</math>. The [[Log-rank conjecture|log rank conjecture]] proposes that the communication complexity, <math>D(f)</math>, is bounded from above by a constant power of the logarithm of the rank of <math>M_f</math>. Since D(f) is bounded from above and below by polynomials of log rank<math>(M_f)</math>, we can say D(f) is polynomially related to log rank<math>(M_f)</math>. Since the rank of a matrix is polynomial time computable in the size of the matrix, such an upper bound would allow the matrix's communication complexity to be approximated in polynomial time. Note, however, that the size of the matrix itself is exponential in the size of the input. For a randomized protocol, the number of bits exchanged in the worst case, R(f), was conjectured to be polynomially related to the following formula: : <math>\log \min(\textrm{rank}(M'_f): M'_f\in \mathbb{R}^{2^n\times 2^n}, (M_f - M'_f)_\infty\leq 1/3).</math> Such log rank conjectures are valuable because they reduce the question of a matrix's communication complexity to a question of linearly independent rows (columns) of the matrix. This particular version, called the Log-Approximate-Rank Conjecture, was recently refuted by Chattopadhyay, Mande and Sherif (2019)<ref>Chattopadhyay, Arkadev; Mande, Nikhil S.; Sherif, Suhail (2019). "The Log-Approximate-Rank Conjecture is False". 2019, Proceeding of the 51st Annual ACM Symposium on Theory of Computing: 42-53.https://doi.org/10.1145/3313276.3316353</ref> using a surprisingly simple counter-example. This reveals that the essence of the communication complexity problem, for example in the EQ case above, is figuring out where in the matrix the inputs are, in order to find out if they're equivalent.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Communication complexity
(section)
Add topic