Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cauchy–Schwarz inequality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations == Various generalizations of the Cauchy–Schwarz inequality exist. [[Hölder's inequality]] generalizes it to <math>L^p</math> norms. More generally, it can be interpreted as a special case of the definition of the norm of a linear operator on a [[Banach space]] (Namely, when the space is a [[Hilbert space]]). Further generalizations are in the context of [[operator theory]], e.g. for operator-convex functions and [[operator algebra]]s, where the domain and/or range are replaced by a [[C*-algebra]] or [[W*-algebra]]. An inner product can be used to define a [[positive linear functional]]. For example, given a Hilbert space <math>L^2(m), m</math> being a finite measure, the standard inner product gives rise to a positive functional <math>\varphi</math> by <math>\varphi (g) = \langle g, 1 \rangle.</math> Conversely, every positive linear functional <math>\varphi</math> on <math>L^2(m)</math> can be used to define an inner product <math>\langle f, g \rangle _\varphi := \varphi\left(g^* f\right),</math> where <math>g^*</math> is the [[Pointwise product|pointwise]] [[complex conjugate]] of <math>g.</math> In this language, the Cauchy–Schwarz inequality becomes<ref>{{cite book|last1=Faria|first1=Edson de|last2=Melo|first2=Welington de|date=2010-08-12|title=Mathematical Aspects of Quantum Field Theory|publisher=Cambridge University Press|isbn=9781139489805|pages=273|url=https://books.google.com/books?id=u9M9PFLNpMMC}}</ref> <math display=block>\bigl|\varphi(g^* f)\bigr|^2 \leq \varphi\left(f^* f\right) \varphi\left(g^* g\right),</math> which extends verbatim to positive functionals on C*-algebras: {{math theorem|name=Cauchy–Schwarz inequality for positive functionals on C*-algebras<ref>{{cite book|last=Lin|first=Huaxin|date=2001-01-01|title=An Introduction to the Classification of Amenable C*-algebras|publisher=World Scientific|isbn=9789812799883|pages=27|url=https://books.google.com/books?id=2qru8d7BCAAC}}</ref><ref>{{cite book|last=Arveson|first=W.|date=2012-12-06|title=An Invitation to C*-Algebras|publisher=Springer Science & Business Media|isbn=9781461263715|pages=28|url=https://books.google.com/books?id=d5TqBwAAQBAJ}}</ref>|note=|style=|math_statement= If <math>\varphi</math> is a positive linear functional on a C*-algebra <math>A,</math> then for all <math>a, b \in A,</math> <math>\left|\varphi\left(b^*a\right)\right|^2 \leq \varphi\left(b^*b\right) \varphi\left(a^*a\right).</math> }} The next two theorems are further examples in operator algebra. {{math theorem|name=Kadison–Schwarz inequality<ref>{{cite book|last=Størmer|first=Erling|date=2012-12-13|title=Positive Linear Maps of Operator Algebras|series=Springer Monographs in Mathematics|publisher=Springer Science & Business Media|isbn=9783642343698|url=https://books.google.com/books?id=lQtKAIONqwIC}}</ref><ref>{{cite journal|last=Kadison|first=Richard V.|date=1952-01-01|title=A Generalized Schwarz Inequality and Algebraic Invariants for Operator Algebras|jstor=1969657|journal=Annals of Mathematics|doi=10.2307/1969657|volume=56|number=3|pages=494–503}}</ref>|note=Named after [[Richard Kadison]]|style=|math_statement= If <math>\varphi</math> is a unital positive map, then for every [[normal operator|normal element]] <math>a</math> in its domain, we have <math>\varphi(a^*a) \geq \varphi\left(a^*\right) \varphi(a)</math> and <math>\varphi\left(a^*a\right) \geq \varphi(a) \varphi\left(a^*\right).</math> }} This extends the fact <math>\varphi\left(a^*a\right) \cdot 1 \geq \varphi(a)^* \varphi(a) = |\varphi(a)|^2,</math> when <math>\varphi</math> is a linear functional. The case when <math>a</math> is self-adjoint, that is, <math>a = a^*,</math> is sometimes known as '''Kadison's inequality'''. {{math theorem|name=Cauchy–Schwarz inequality|note=Modified Schwarz inequality for 2-positive maps<ref>{{cite book|last=Paulsen|first=Vern|year=2002|title=Completely Bounded Maps and Operator Algebras|series=Cambridge Studies in Advanced Mathematics|volume=78|publisher=Cambridge University Press|isbn=9780521816694|page=40|url=https://books.google.com/books?id=VtSFHDABxMIC&pg=PA40}}</ref>|style=|math_statement= For a 2-positive map <math>\varphi</math> between C*-algebras, for all <math>a, b</math> in its domain, <math display=block>\begin{align} \varphi(a)^*\varphi(a) &\leq \Vert\varphi(1)\Vert \varphi\left(a^*a\right), \text{ and } \\[5mu] \Vert\varphi\left(a^* b\right)\Vert^2 &\leq \Vert\varphi\left(a^*a\right)\Vert \cdot \Vert\varphi\left(b^*b\right)\Vert. \end{align}</math> }} Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality: {{math theorem|name=Callebaut's Inequality<ref>{{cite journal|last1=Callebaut|first1=D.K.|date=1965|title=Generalization of the Cauchy–Schwarz inequality|journal=J. Math. Anal. Appl.|volume=12|issue=3|pages=491–494|doi=10.1016/0022-247X(65)90016-8|doi-access=free}}</ref>|note=|style=|math_statement= For reals <math>0 \leq s \leq t \leq 1,</math> <math display=block>\begin{align} \biggl(\sum_{i=1}^n a_i b_i\biggr)^2 ~&\leq~ \biggl(\sum_{i=1}^n a_i^{1+s} b_i^{1-s}\biggr) \biggl(\sum_{i=1}^n a_i^{1-s} b_i^{1+s}\biggr) \\ &\leq~ \biggl(\sum_{i=1}^n a_i^{1+t} b_i^{1-t}\biggr) \biggl(\sum_{i=1}^n a_i^{1-t} b_i^{1+t}\biggr) ~\leq~ \biggl(\sum_{i=1}^n a_i^2\biggr) \biggl(\sum_{i=1}^n b_i^2\biggr). \end{align}</math> }} This theorem can be deduced from [[Hölder's inequality]].<ref>{{cite book|title=Callebaut's inequality|publisher=Entry in the AoPS Wiki|url=https://artofproblemsolving.com/wiki/index.php?title=Callebaut%27s_Inequality}}</ref> There are also non-commutative versions for operators and tensor products of matrices.<ref>{{cite journal|last1=Moslehian|first1=M.S.|last2=Matharu|first2=J.S.|last3=Aujla|first3=J.S.|date=2011|title=Non-commutative Callebaut inequality|journal=Linear Algebra and Its Applications|volume=436|issue=9|pages=3347–3353|doi=10.1016/j.laa.2011.11.024|arxiv=1112.3003|s2cid=119592971}}</ref> Several matrix versions of the Cauchy–Schwarz inequality and [[Kantorovich inequality]] are applied to linear regression models.<ref> {{cite journal |author1=Liu, Shuangzhe|author2=Neudecker, Heinz |year=1999 |title= A survey of Cauchy–Schwarz and Kantorovich-type matrix inequalities |journal= Statistical Papers |volume=40 |pages=55–73 |doi=10.1007/BF02927110 |s2cid=122719088 }} </ref> <ref>{{Cite journal| last1=Liu|first1=Shuangzhe| last2= Trenkler|first2=Götz| last3=Kollo|first3=Tõnu| last4=von Rosen|first4=Dietrich| last5=Baksalary|first5=Oskar Maria| date= 2023| title= Professor Heinz Neudecker and matrix differential calculus| journal= Statistical Papers|volume=65 |issue=4 |pages=2605–2639 | language=en| doi= 10.1007/s00362-023-01499-w|s2cid=263661094 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cauchy–Schwarz inequality
(section)
Add topic