Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Asymptote
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Asymptotic cone== [[File:Conic section hyperbola.gif|thumb|Hyperbolas, obtained cutting the same right circular cone with a plane and their asymptotes]] The [[hyperbola]] :<math>\frac{x^2}{a^2}-\frac{y^2}{b^2}= 1</math> has the two asymptotes :<math>y=\pm\frac{b}{a}x.</math> The equation for the union of these two lines is :<math>\frac{x^2}{a^2}-\frac{y^2}{b^2}=0.</math> Similarly, the [[hyperboloid]] :<math>\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1</math> is said to have the '''asymptotic cone'''<ref>[https://books.google.com/books?id=YMU0AAAAMAAJ L.P. Siceloff, G. Wentworth, D.E. Smith ''Analytic geometry'' (1922) p. 271]</ref><ref>[https://books.google.com/books?id=fGg4AAAAMAAJ P. Frost ''Solid geometry'' (1875)] This has a more general treatment of asymptotic surfaces.</ref> :<math>\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0.</math> The distance between the hyperboloid and cone approaches 0 as the distance from the origin approaches infinity. More generally, consider a surface that has an implicit equation <math>P_d(x,y,z)+P_{d-2}(x,y,z) + \cdots P_0=0,</math> where the <math>P_i</math> are [[homogeneous polynomial]]s of degree <math> i </math> and <math>P_{d-1}=0</math>. Then the equation <math>P_d(x,y,z)=0</math> defines a [[cone]] which is centered at the origin. It is called an '''asymptotic cone''', because the distance to the cone of a point of the surface tends to zero when the point on the surface tends to infinity.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Asymptote
(section)
Add topic