Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Algebraic topology
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== {{Commons category|Algebraic topology}} {{Wikiquote}} *{{citation |first=Dylan G. L. |last=Allegretti |url=http://www.math.uchicago.edu/~may/VIGRE/VIGREREU2008.html |title=Simplicial Sets and van Kampen's Theorem |year=2008}} ''(Discusses generalized versions of van Kampen's theorem applied to topological spaces and simplicial sets).'' *{{citation |last=Bredon |first=Glen E. |author-link=Glen Bredon|title=Topology and Geometry |year=1993 |publisher=Springer |series=Graduate Texts in Mathematics |volume=139 |url=https://books.google.com/books?id=G74V6UzL_PUC |isbn=0-387-97926-3}}. *{{citation |first=R. |last=Brown |author-link=Ronald Brown (mathematician) |url=http://www.bangor.ac.uk/r.brown/hdaweb2.html |title=Higher dimensional group theory |year=2007 |access-date=2022-08-17 |archive-date=2016-05-14 |archive-url=http://arquivo.pt/wayback/20160514115207/http://www.bangor.ac.uk/r.brown/hdaweb2.html |url-status=dead }} ''(Gives a broad view of higher-dimensional van Kampen theorems involving multiple groupoids)''. *{{citation |first1=R. |last1=Brown |first2=A. |last2=Razak |title=A van Kampen theorem for unions of non-connected spaces |journal=Arch. Math. |volume=42 |pages=85β88 |year=1984 |doi=10.1007/BF01198133 |s2cid=122228464 }}. "Gives a general theorem on the [[fundamental groupoid]] with a set of base points of a space which is the union of open sets." *{{citation |first1=R. |last1=Brown |first2=K. |last2=Hardie |first3=H. |last3=Kamps |first4=T. |last4=Porter |title=The homotopy double groupoid of a Hausdorff space |journal=Theory Appl. Categories |volume=10 |issue=2 |pages=71β93 |year=2002 |url=http://www.emis.de/journals/TAC/volumes/10/2/10-02abs.html}}. *{{citation |first1=R. |last1=Brown |first2=P.J. |last2=Higgins |title=On the connection between the second relative homotopy groups of some related spaces |journal=Proc. London Math. Soc. |volume=S3-36 |issue= 2|pages=193β212 |year=1978 |doi=10.1112/plms/s3-36.2.193 }}. "The first 2-dimensional version of van Kampen's theorem." *{{citation |first1=Ronald |last1=Brown |first2=Philip J. |last2=Higgins |first3=Rafael |last3=Sivera |title=Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids |url=http://www.bangor.ac.uk/~mas010/nonab-a-t.html |year=2011 |publisher=European Mathematical Society |isbn=978-3-03719-083-8 |series=European Mathematical Society Tracts in Mathematics |volume=15|archive-url=https://web.archive.org/web/20090604050453/http://www.bangor.ac.uk/~mas010/nonab-a-t.html |archive-date=2009-06-04 |arxiv=math/0407275 }} This provides a homotopy theoretic approach to basic algebraic topology, without needing a basis in [[singular homology]], or the method of simplicial approximation. It contains a lot of material on [[crossed module]]s. * {{ citation | first1 = John B. | last1 = Fraleigh | year = 1976 | isbn = 0-201-01984-1 | title = A First Course In Abstract Algebra | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }} *{{citation |author-link1=Marvin Greenberg |last1=Greenberg |first1=Marvin J. |first2=John R. |last2=Harper |title=Algebraic Topology: A First Course, Revised edition |year=1981 |publisher=Westview/Perseus |series=Mathematics Lecture Note Series |isbn=9780805335576 |url-access=registration |url=https://archive.org/details/algebraictopolog00gree_0 }}. A functorial, algebraic approach originally by Greenberg with geometric flavoring added by Harper. *{{citation| last=Hatcher |first= Allen |author-link=Allen Hatcher| title=Algebraic Topology |url=http://pi.math.cornell.edu/~hatcher/AT/ATpage.html |year= 2002 |publisher=Cambridge University Press |place=Cambridge |isbn=0-521-79540-0}}. A modern, geometrically flavoured introduction to algebraic topology. *{{citation |first=Philip J. |last=Higgins |title=Notes on categories and groupoids |url=https://books.google.com/books?id=IqdIAAAAMAAJ |year=1971 |publisher=Van Nostrand Reinhold |isbn=9780442034061}} *{{citation| last=Maunder |first=C. R. F. |title=Algebraic Topology |journal=Nature |year=1970 |volume=227 |issue=5259 |page=756 |publisher= Van Nostrand Reinhold |doi=10.1038/227756a0 |bibcode=1970Natur.227..756F |place=London |isbn=0-486-69131-4}}. *{{citation |author-link=Tammo tom Dieck |first=Tammo |last=tom Dieck |title=Algebraic Topology |url=https://books.google.com/books?id=ruSqmB7LWOcC |year=2008 |publisher=European Mathematical Society |isbn=978-3-03719-048-7 |series=EMS Textbooks in Mathematics}} * {{citation|first=Egbert|last= van Kampen|author-link=Egbert van Kampen| title=On the connection between the fundamental groups of some related spaces| journal=[[American Journal of Mathematics]]|volume= 55 |year=1933 |issue= 1|pages=261β7 |jstor=51000091}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Algebraic topology
(section)
Add topic