Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Tesla coil
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===High voltage production=== {{Multiple image | direction = vertical | header = Tesla coil [[schematic]]s | image1 = Tesla coil 3.svg | caption1 = Typical circuit configuration. Here, the spark gap shorts the high frequency across the first transformer that is supplied by alternating current. An inductance, not shown, protects the transformer. This design is favoured when a relatively fragile neon sign transformer is used. | image2 = Tesla coil 4.svg | caption2 = Alternative circuit configuration. With the capacitor in parallel to the first transformer and the spark gap in series to the Tesla-coil primary, the AC supply transformer must be capable of withstanding high voltages at high frequencies. }} A large Tesla coil of more modern design often operates at very high peak power levels, up to many megawatts (millions of [[watt]]s, equivalent to thousands of [[horsepower]]). It is therefore adjusted and operated carefully, not only for efficiency and economy, but also for safety. If, due to improper tuning, the maximum voltage point occurs below the terminal, along the secondary coil, a discharge ([[electrostatic discharge|spark]]) may break out and damage or destroy the coil wire, supports, or nearby objects. Tesla experimented with these, and many other, circuit configurations (see right). The Tesla coil primary winding, spark gap and tank capacitor are connected in series. In each circuit, the AC supply transformer charges the tank capacitor until its voltage is sufficient to break down the spark gap. The gap suddenly fires, allowing the charged tank capacitor to discharge into the primary winding. Once the gap fires, the electrical behavior of either circuit is identical. Experiments have shown that neither circuit offers any marked performance advantage over the other. However, in the typical circuit, the spark gap's short circuiting action prevents high-frequency oscillations from 'backing up' into the supply transformer. In the alternate circuit, high amplitude high-frequency oscillations that appear across the capacitor also are applied to the supply transformer's winding. This can induce [[corona discharge]]s between turns that weaken and eventually destroy the transformer's insulation. Experienced Tesla coil builders almost exclusively use the top circuit, often augmenting it with low pass filters (resistor and capacitor (RC) networks) between the supply transformer and spark gap to help protect the supply transformer. This is especially important when using transformers with fragile high-voltage windings, such as [[neon sign]] transformers (NSTs). Regardless of which configuration is used, the HV transformer must be of a type that self-limits its secondary current by means of internal [[short-circuit inductance]]. A normal (low Short-circuit inductance) high-voltage transformer must use an external limiter (sometimes called a ballast) to limit current. NSTs are designed to have high Short-circuit inductance to limit their short circuit current to a safe level. ====Tuning==== The primary coil's resonant frequency is tuned to that of the secondary, by using low-power oscillations, then increasing the power (and retuning if necessary) until the system operates properly at maximum power. While tuning, a small projection (called a "breakout bump") is often added to the top terminal in order to stimulate corona and spark discharges (sometimes called streamers) into the surrounding air. Tuning can then be adjusted so as to achieve the longest streamers at a given power level, corresponding to a frequency match between the primary and secondary coil. Capacitive "loading" by the streamers tends to lower the resonant frequency of a Tesla coil operating under full power. A toroidal topload is often preferred to other shapes, such as a sphere. A toroid with a major diameter that is much larger than the secondary diameter provides improved shaping of the electric field at the topload. This provides better protection of the secondary winding (from damaging streamer strikes) than a sphere of similar diameter. And, a toroid permits fairly independent control of topload capacitance versus spark breakout voltage. A toroid's capacitance is mainly a function of its major diameter, while the spark breakout voltage is mainly a function of its minor diameter. A grid dip oscillator (GDO) is sometimes used to help facilitate initial tuning and aid in design. The resonant frequency of the secondary can be difficult to determine except by using a GDO or other experimental method, whereas the physical properties of the primary more closely represent lumped approximations of RF tank design. In this schema the secondary is built somewhat arbitrarily in imitation of other successful designs, or entirely so with supplies on hand, its resonant frequency is measured and the primary designed to suit. ====Air discharges==== [[File:operating tesla coil.jpg|thumb|left|upright|A small, later-type Tesla coil in operation: The output is giving {{convert|43|cm|adj=on}} sparks. The diameter of the secondary is {{convert|8|cm|abbr=on}}. The power source is a {{nowrap|10 000 V,}} {{nowrap|60 [[hertz|Hz]]}} [[current limiting|current-limited]] supply.]] In coils that produce air discharges, such as those built for entertainment, electrical energy from the secondary and toroid is transferred to the surrounding air as electrical charge, heat, light, and sound. The process is similar to charging or discharging a [[capacitor]], except that a Tesla coil uses AC instead of DC. The current that arises from shifting charges within a capacitor is called a [[displacement current]]. Tesla coil discharges are formed as a result of displacement currents as pulses of electrical charge are rapidly transferred between the high-voltage toroid and nearby regions within the air (called [[space charge]] regions). Although the space charge regions around the toroid are invisible, they play a profound role in the appearance and location of Tesla coil discharges. When the spark gap fires, the charged capacitor discharges into the primary winding, causing the primary circuit to oscillate. The oscillating primary current creates an oscillating magnetic field that couples to the secondary winding, transferring energy into the secondary side of the transformer and causing it to oscillate with the toroid capacitance to ground. Energy transfer occurs over a number of cycles, until most of the energy that was originally in the primary side is transferred to the secondary side. The greater the magnetic coupling between windings, the shorter the time required to complete the energy transfer. As energy builds within the oscillating secondary circuit, the amplitude of the toroid's RF voltage rapidly increases, and the air surrounding the toroid begins to undergo [[dielectric breakdown]], forming a corona discharge. As the secondary coil's energy (and output voltage) continue to increase, larger pulses of displacement current further ionize and heat the air at the point of initial breakdown. This forms a very electrically conductive "root" of hotter [[plasma (physics)|plasma]], called a [[leader (spark)|leader]], that projects outward from the toroid. The plasma within the leader is considerably hotter than a corona discharge, and is considerably more conductive. In fact, its properties are similar to an [[electric arc]]. The leader tapers and branches into thousands of thinner, cooler, hair-like discharges (called streamers). The streamers look like a bluish 'haze' at the ends of the more luminous leaders. The streamers transfer charge between the leaders and toroid to nearby space charge regions. The displacement currents from countless streamers all feed into the leader, helping to keep it hot and electrically conductive. The primary break rate of sparking Tesla coils is slow compared to the resonant frequency of the resonator-topload assembly. When the switch closes, energy is transferred from the primary LC circuit to the resonator where the voltage rings up over a short period of time up culminating in the electrical discharge. In a spark gap Tesla coil, the primary-to-secondary energy transfer process happens repetitively at typical pulsing rates of 50β500 times per second, depending on the frequency of the input line voltage. At these rates, previously-formed leader channels do not get a chance to fully cool down between pulses. So, on successive pulses, newer discharges can build upon the hot pathways left by their predecessors. This causes incremental growth of the leader from one pulse to the next, lengthening the entire discharge on each successive pulse. Repetitive pulsing causes the discharges to grow until the average energy available from the Tesla coil during each pulse balances the average energy being lost in the discharges (mostly as heat). At this point, [[dynamic equilibrium]] is reached, and the discharges have reached their maximum length for the Tesla coil's output power level. The unique combination of a rising high-voltage [[radio frequency]] envelope and repetitive pulsing seem to be ideally suited to creating long, branching discharges that are considerably longer than would be otherwise expected by output voltage considerations alone. High-voltage, low-energy discharges create filamentary multibranched discharges which are purplish-blue in colour. High-voltage, high-energy discharges create thicker discharges with fewer branches, are pale and luminous, almost white, and are much longer than low-energy discharges, because of increased ionisation. A strong smell of ozone and nitrogen oxides will occur in the area. The important factors for maximum discharge length appear to be voltage, energy, and still air of low to moderate humidity. There are comparatively few scientific studies about the initiation and growth of pulsed lower-frequency RF discharges, so some aspects of Tesla coil air discharges are not as well understood when compared to DC, power-frequency AC, HV impulse, and lightning discharges.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Tesla coil
(section)
Add topic