Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Sequence
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Applications and important results=== If <math>(a_n)</math> and <math>(b_n)</math> are convergent sequences, then the following limits exist, and can be computed as follows:<ref name="Gaughan" /><ref name="Dawkins">{{cite web |url=http://tutorial.math.lamar.edu/Classes/CalcII/Sequences.aspx |title=Series and Sequences |last1=Dawikins |first1=Paul |work=Paul's Online Math Notes/Calc II (notes) |access-date=18 December 2012 |archive-date=30 November 2012 |archive-url=https://web.archive.org/web/20121130095834/http://tutorial.math.lamar.edu/Classes/CalcII/Sequences.aspx |url-status=live }}</ref> * <math>\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n</math> * <math>\lim_{n\to\infty} c a_n = c \lim_{n\to\infty} a_n</math> for all real numbers <math>c</math> * <math>\lim_{n\to\infty} (a_n b_n) = \bigl( \lim_{n\to\infty} a_n \bigr) \bigl( \lim_{n\to\infty} b_n \bigr)</math> * <math>\lim_{n\to\infty} \frac{a_n} {b_n} = \bigl( \lim \limits_{n\to\infty} a_n \bigr) \big/ \bigl( \lim \limits_{n\to\infty} b_n \bigr)</math>, provided that <math>\lim_{n\to\infty} b_n \ne 0</math> * <math>\lim_{n\to\infty} a_n^p = \bigl( \lim_{n\to\infty} a_n \bigr)^p</math> for all <math>p > 0</math> and <math>a_n > 0</math> Moreover: * If <math>a_n \leq b_n</math> for all <math>n</math> greater than some <math>N</math>, then <math>\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n </math>.{{efn|If the inequalities are replaced by strict inequalities then this is false: There are sequences such that <math>a_n < b_n</math> for all <math>n</math>, but <math>\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n </math>.}} * ([[Squeeze Theorem]])<br>If <math>(c_n)</math> is a sequence such that <math>a_n \leq c_n \leq b_n</math> for all <math>n > N</math> {{nowrap|and <math>\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L</math>,}}<br>then <math>(c_n)</math> is convergent, and <math>\lim_{n\to\infty} c_n = L</math>. * If a sequence is [[#Bounded|bounded]] and [[#Increasing and decreasing|monotonic]] then it is convergent. * A sequence is convergent if and only if all of its subsequences are convergent.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Sequence
(section)
Add topic