Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pi
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Adoption of the symbol {{pi}} === {{Multiple image | image1 = William Jones, the Mathematician.jpg | caption1 = The earliest known use of the Greek letter {{pi}} to represent the ratio of a circle's circumference to its diameter was by Welsh mathematician [[William Jones (mathematician)|William Jones]] in 1706 | caption2 = [[Leonhard Euler]] popularized the use of the Greek letter {{pi}} in works he published in 1736 and 1748. | total_width = 300 | image2 = Leonhard Euler.jpg | align = right }} The first recorded use of the symbol {{pi}} in circle geometry is in [[William Oughtred|Oughtred's]] ''Clavis Mathematicae'' (1648),<ref>{{cite book |url=https://archive.org/details/bub_gb_ddMxgr27tNkC |title=Clavis Mathematicæ |last=Oughtred |author-link=William Oughtred |first=William |date=1648 |publisher=Thomas Harper |location=London |page=[https://archive.org/details/bub_gb_ddMxgr27tNkC/page/n220 69] |language=la |trans-title=The key to mathematics}} (English translation: {{Cite book |url=https://books.google.com/books?id=S50yAQAAMAAJ&pg=PA99 |title=Key of the Mathematics |last=Oughtred |first=William |author-link=William Oughtred |date=1694 |publisher=J. Salusbury |language=en}})</ref>{{sfn|Arndt|Haenel|2006|p=166}} where the [[Greek letters]] {{pi}} and ''δ'' were combined into the fraction {{tmath|\tfrac \pi \delta}} for denoting the ratios [[semiperimeter]] to [[semidiameter]] and perimeter to diameter, that is, what is presently denoted as {{pi}}.<ref name=firstPi>{{Cite book |url=https://books.google.com/books?id=KTgPAAAAQAAJ&pg=PP3 |title=Theorematum in libris Archimedis de sphaera et cylindro declarario |last=Oughtred |first=William |author-link=William Oughtred |date=1652 |publisher=Excudebat L. Lichfield, Veneunt apud T. Robinson |language=la |quote={{math|''δ''.''π''}} :: semidiameter. semiperipheria}}</ref><ref name="Cajori-2007">{{Cite book |url=https://books.google.com/books?id=bT5suOONXlgC&pg=PA9 |title=A History of Mathematical Notations: Vol. II |last=Cajori |first=Florian |author-link=Florian Cajori |date=2007 |publisher=Cosimo, Inc. |isbn=978-1-60206-714-1 |pages=8–13 |language=en |quote=the ratio of the length of a circle to its diameter was represented in the fractional form by the use of two letters ... J.A. Segner ... in 1767, he represented {{math|3.14159...}} by {{math|''δ'':''π''}}, as did Oughtred more than a century earlier}}</ref><ref name="Smith-1958">{{Cite book |url=https://books.google.com/books?id=uTytJGnTf1kC&pg=PA312 |title=History of Mathematics |last=Smith |first=David E. |author-link=David Eugene Smith |date=1958 |publisher=Courier Corporation |isbn=978-0-486-20430-7 |page=312 |language=en}}</ref><ref>{{Cite journal |last=Archibald |first=R. C. |author-link=Raymond C. Archibald |date=1921 |title=Historical Notes on the Relation {{math |1=''e''<sup>−(''π''/2)</sup> = ''i''<sup>''i''</sup>}} |jstor=2972388 |journal=The American Mathematical Monthly |volume=28 |issue=3 |pages=116–121 |doi=10.2307/2972388 |quote=It is noticeable that these letters are ''never'' used separately, that is, {{pi}} is ''not'' used for 'Semiperipheria'}}</ref> (Before then, mathematicians sometimes used letters such as ''c'' or ''p'' instead.{{sfn|Arndt|Haenel|2006|p=166}}) [[Isaac Barrow|Barrow]] likewise used the same notation,<ref>{{Cite book |chapter-url=https://archive.org/stream/mathematicalwor00whewgoog#page/n405/mode/1up |title=The mathematical works of Isaac Barrow |last=Barrow |first=Isaac |author-link=Isaac Barrow |date=1860 |publisher=Cambridge University press |others=Harvard University |editor-last=Whewell |editor-first=William |page=381 |language=la |chapter=Lecture XXIV}}</ref> while [[David Gregory (mathematician)|Gregory]] instead used <math display=inline>\frac \pi \rho</math> to represent {{math|6.28... }}.<ref>{{Cite journal |last=Gregorius |first=David |date=1695 |title=Ad Reverendum Virum D. Henricum Aldrich S.T.T. Decanum Aedis Christi Oxoniae |jstor=102382 |journal=Philosophical Transactions |language=la |volume=19 |issue=231 |pages=637–652 |doi=10.1098/rstl.1695.0114 |bibcode=1695RSPT...19..637G |doi-access=free |url=https://archive.org/download/crossref-pre-1909-scholarly-works/10.1098%252Frstl.1684.0084.zip/10.1098%252Frstl.1695.0114.pdf}}</ref>{{r|Smith-1958}} The earliest known use of the Greek letter {{pi}} alone to represent the ratio of a circle's circumference to its diameter was by Welsh mathematician [[William Jones (mathematician)|William Jones]] in his 1706 work ''{{lang|la|Synopsis Palmariorum Matheseos|italic=unset}}; or, a New Introduction to the Mathematics''.{{r|jones}}{{sfn|Arndt|Haenel|2006|p=165|ps=: A facsimile of Jones' text is in {{harvnb|Berggren|Borwein|Borwein|1997|pp=108–109}}.}} The Greek letter appears on p. 243 in the phrase "<math display=inline>\tfrac12</math> Periphery ({{pi}})", calculated for a circle with radius one. However, Jones writes that his equations for {{pi}} are from the "ready pen of the truly ingenious Mr. [[John Machin]]", leading to speculation that Machin may have employed the Greek letter before Jones.{{sfn|Arndt|Haenel|2006|p=166}} Jones' notation was not immediately adopted by other mathematicians, with the fraction notation still being used as late as 1767.{{r|Cajori-2007}}<ref>{{Cite book |url=https://books.google.com/books?id=NmYVAAAAQAAJ&pg=PA282 |title=Cursus Mathematicus |last=Segner |first=Joannes Andreas |date=1756 |publisher=Halae Magdeburgicae |page=282 |language=la |access-date=15 October 2017 |archive-url=https://web.archive.org/web/20171015150340/https://books.google.co.uk/books?id=NmYVAAAAQAAJ&pg=PA282 |archive-date=15 October 2017 |url-status=live}}</ref> [[Euler]] started using the single-letter form beginning with his 1727 ''Essay Explaining the Properties of Air'', though he used {{math|1=''π'' = 6.28...}}, the ratio of periphery to radius, in this and some later writing.<ref>{{Cite journal |last=Euler |first=Leonhard |author-link=Leonhard Euler |date=1727 |title=Tentamen explicationis phaenomenorum aeris |url=http://eulerarchive.maa.org/docs/originals/E007.pdf#page=5 |journal=Commentarii Academiae Scientiarum Imperialis Petropolitana |language=la |volume=2 |page=351 |id=[http://eulerarchive.maa.org/pages/E007.html E007] |quote=Sumatur pro ratione radii ad peripheriem, {{math|I : π}} |access-date=15 October 2017 |archive-url=https://web.archive.org/web/20160401072718/http://eulerarchive.maa.org/docs/originals/E007.pdf#page=5 |archive-date=1 April 2016 |url-status=live}} [http://www.17centurymaths.com/contents/euler/e007tr.pdf#page=3 English translation by Ian Bruce] {{Webarchive|url=https://web.archive.org/web/20160610172054/http://www.17centurymaths.com/contents/euler/e007tr.pdf#page=3 |date=10 June 2016 }}: "{{mvar|π}} is taken for the ratio of the radius to the periphery [note that in this work, Euler's {{pi}} is double our {{pi}}.]" {{pb}} {{Cite book |url=https://books.google.com/books?id=3C1iHFBXVEcC&pg=PA139 |title=Lettres inédites d'Euler à d'Alembert |last=Euler |first=Leonhard |author-link=Leonhard Euler |series=Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche |year=1747 |editor-last=Henry |editor-first=Charles |volume=19 |publication-date=1886 |page=139 |language=fr |id=[http://eulerarchive.maa.org/pages/E858.html E858] |quote=Car, soit π la circonference d'un cercle, dout le rayon est {{math|{{=}} 1}}}} English translation in {{Cite journal |last=Cajori |first=Florian |author-link=Florian Cajori |date=1913 |title=History of the Exponential and Logarithmic Concepts |jstor=2973441 |journal=The American Mathematical Monthly |volume=20 |issue=3 |pages=75–84 |doi=10.2307/2973441 |quote=Letting {{pi}} be the circumference (!) of a circle of unit radius}}</ref> Euler first used {{nowrap|1={{pi}} = 3.14...}} in his 1736 work ''[[Mechanica]]'',<ref>{{Cite book |last=Euler |first=Leonhard |author-link=Leonhard Euler |title=Mechanica sive motus scientia analytice exposita. (cum tabulis) |date=1736 |publisher=Academiae scientiarum Petropoli |volume=1 |page=113 |language=la |chapter=Ch. 3 Prop. 34 Cor. 1 |id=[http://eulerarchive.maa.org/pages/E015.html E015] |quote=Denotet {{math|1 : ''π''}} rationem diametri ad peripheriam |chapter-url=https://books.google.com/books?id=jgdTAAAAcAAJ&pg=PA113}} [http://www.17centurymaths.com/contents/euler/mechvol1/ch3a.pdf#page=26 English translation by Ian Bruce] {{Webarchive|url=https://web.archive.org/web/20160610183753/http://www.17centurymaths.com/contents/euler/mechvol1/ch3a.pdf#page=26|date=10 June 2016}} : "Let {{math|1 : ''π''}} denote the ratio of the diameter to the circumference"</ref> and continued in his widely read 1748 work {{lang|la|[[Introductio in analysin infinitorum]]|italic=yes}} (he wrote: "for the sake of brevity we will write this number as {{pi}}; thus {{pi}} is equal to half the circumference of a circle of radius {{math|1}}").<ref>{{Cite book |url=http://gallica.bnf.fr/ark:/12148/bpt6k69587/f155 |title=Leonhardi Euleri opera omnia. 1, Opera mathematica. Volumen VIII, Leonhardi Euleri introductio in analysin infinitorum. Tomus primus / ediderunt Adolf Krazer et Ferdinand Rudio |last=Euler |first=Leonhard |date=1922 |author-link=Leonhard Euler |publisher=B. G. Teubneri |location=Lipsae |pages=133–134 |language=la |id=[http://eulerarchive.maa.org/pages/E101.html E101] |access-date=15 October 2017 |archive-url=https://web.archive.org/web/20171016022758/http://gallica.bnf.fr/ark:/12148/bpt6k69587/f155 |archive-date=16 October 2017 |url-status=live}}</ref> Because Euler corresponded heavily with other mathematicians in Europe, the use of the Greek letter spread rapidly, and the practice was universally adopted thereafter in the [[Western world]],{{sfn|Arndt|Haenel|2006|p=166}} though the definition still varied between {{math|3.14...}} and {{math|6.28...}} as late as 1761.<ref>{{Cite book |url=https://books.google.com/books?id=P-hEAAAAcAAJ&pg=PA374 |title=Cursus Mathematicus: Elementorum Analyseos Infinitorum Elementorum Analyseos Infinitorvm |last=Segner |first=Johann Andreas von |date=1761 |publisher=Renger |page=374 |language=la |quote=Si autem {{pi}} notet peripheriam circuli, cuius diameter eſt {{math|2}}}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pi
(section)
Add topic