Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Normal distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Moments === {{See also|List of integrals of Gaussian functions}} The plain and absolute [[moment (mathematics)|moments]] of a variable {{tmath|X}} are the expected values of <math display=inline>X^p</math> and <math display=inline>|X|^p</math>, respectively. If the expected value {{tmath|\mu}} of {{tmath|X}} is zero, these parameters are called ''central moments;'' otherwise, these parameters are called ''non-central moments.'' Usually we are interested only in moments with integer order {{tmath|p}}. If {{tmath|X}} has a normal distribution, the non-central moments exist and are finite for any {{tmath|p}} whose real part is greater than β1. For any non-negative integer {{tmath|p}}, the plain central moments are:<ref>{{cite book|last1=Papoulis|first1=Athanasios|title=Probability, Random Variables and Stochastic Processes|page=148|edition=4th}}</ref> <math display=block> \operatorname{E}\left[(X-\mu)^p\right] = \begin{cases} 0 & \text{if }p\text{ is odd,} \\ \sigma^p (p-1)!! & \text{if }p\text{ is even.} \end{cases} </math> Here <math display=inline>n!!</math> denotes the [[double factorial]], that is, the product of all numbers from {{tmath|n}} to 1 that have the same parity as <math display=inline>n.</math> The central absolute moments coincide with plain moments for all even orders, but are nonzero for odd orders. For any non-negative integer <math display=inline>p,</math> <math display=block>\begin{align} \operatorname{E}\left[|X - \mu|^p\right] &= \sigma^p (p-1)!! \cdot \begin{cases} \sqrt{\frac{2}{\pi}} & \text{if }p\text{ is odd} \\ 1 & \text{if }p\text{ is even} \end{cases} \\ &= \sigma^p \cdot \frac{2^{p/2}\Gamma\left(\frac{p+1} 2 \right)}{\sqrt\pi}. \end{align}</math> The last formula is valid also for any non-integer <math display=inline>p>-1.</math> When the mean <math display=inline>\mu \ne 0,</math> the plain and absolute moments can be expressed in terms of [[confluent hypergeometric function]]s <math display=inline>{}_1F_1</math> and <math display=inline>U.</math><ref>{{cite arXiv|last1=Winkelbauer|first1=Andreas|title=Moments and Absolute Moments of the Normal Distribution |date= 2012|class=math.ST |eprint=1209.4340}}</ref> <math display="block">\begin{align} \operatorname{E}\left[X^p\right] &= \sigma^p\cdot {\left(-i\sqrt 2\right)}^p \, U{\left(-\frac{p}{2}, \frac{1}{2}, -\frac{\mu^2}{2\sigma^2}\right)}, \\ \operatorname{E}\left[|X|^p \right] &= \sigma^p \cdot 2^{p/2} \frac {\Gamma{\left(\frac{1+p} 2\right)}}{\sqrt\pi} \, {}_1F_1{\left( -\frac{p}{2}, \frac{1}{2}, -\frac{\mu^2}{2\sigma^2} \right)}. \end{align}</math> These expressions remain valid even if {{tmath|p}} is not an integer. See also [[Hermite polynomials#"Negative variance"|generalized Hermite polynomials]]. {| class="wikitable" style="margin: auto;" |- ! Order !! Non-central moment, <math>\operatorname{E}\left[X^p\right]</math> !! Central moment, <math>\operatorname{E}\left[(X-\mu)^p\right]</math> |- | 1 | {{tmath|\mu}} | {{tmath|0}} |- | 2 | <math display=inline>\mu^2+\sigma^2</math> | <math display=inline>\sigma^2</math> |- | 3 | <math display=inline>\mu^3+3\mu\sigma^2</math> | {{tmath|0}} |- | 4 | <math display=inline>\mu^4+6\mu^2\sigma^2+3\sigma^4</math> | <math display=inline>3\sigma^4</math> |- | 5 | <math display=inline>\mu^5+10\mu^3\sigma^2+15\mu\sigma^4</math> | {{tmath|0}} |- | 6 | <math display=inline>\mu^6+15\mu^4\sigma^2+45\mu^2\sigma^4+15\sigma^6</math> | <math display=inline>15\sigma^6</math> |- | 7 | <math display=inline>\mu^7+21\mu^5\sigma^2+105\mu^3\sigma^4+105\mu\sigma^6</math> | {{tmath|0}} |- | 8 | <math display=inline>\mu^8+28\mu^6\sigma^2+210\mu^4\sigma^4+420\mu^2\sigma^6+105\sigma^8</math> | <math display=inline>105\sigma^8</math> |} The expectation of {{tmath|X}} conditioned on the event that {{tmath|X}} lies in an interval <math display=inline>[a,b]</math> is given by <math display=block>\operatorname{E}\left[X \mid a<X<b \right] = \mu - \sigma^2\frac{f(b)-f(a)}{F(b)-F(a)}\,,</math> where {{tmath|f}} and {{tmath|F}} respectively are the density and the cumulative distribution function of {{tmath|X}}. For <math display=inline>b=\infty</math> this is known as the [[inverse Mills ratio]]. Note that above, density {{tmath|f}} of {{tmath|X}} is used instead of standard normal density as in inverse Mills ratio, so here we have <math display=inline>\sigma^2</math> instead of {{tmath|\sigma}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Normal distribution
(section)
Add topic