Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Non-Euclidean geometry
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Kinematic geometries== Hyperbolic geometry found an application in [[kinematics]] with the [[physical cosmology]] introduced by [[Hermann Minkowski]] in 1908. Minkowski introduced terms like [[worldline]] and [[proper time]] into [[mathematical physics]]. He realized that the [[submanifold]], of events one moment of proper time into the future, could be considered a [[hyperbolic space]] of three dimensions.<ref>Hermann Minkowski (1908β9). [[s:Space and Time|"Space and Time"]] (Wikisource).</ref><ref>Scott Walter (1999) [http://www.univ-nancy2.fr/DepPhilo/walter/papers/nes.pdf Non-Euclidean Style of Special Relativity]</ref> Already in the 1890s [[Alexander Macfarlane]] was charting this submanifold through his ''Algebra of Physics'' and [[hyperbolic quaternion]]s, though Macfarlane did not use cosmological language as Minkowski did in 1908. The relevant structure is now called the [[hyperboloid model]] of hyperbolic geometry. The non-Euclidean planar algebras support kinematic geometries in the plane. For instance, the [[split-complex number]] ''z'' = e<sup>''a''j</sup> can represent a spacetime event one moment into the future of a [[frame of reference]] of [[rapidity]] ''a''. Furthermore, multiplication by ''z'' amounts to a [[Lorentz boost]] mapping the frame with rapidity zero to that with rapidity ''a''. Kinematic study makes use of the [[dual number]]s <math>z = x + y \epsilon, \quad \epsilon^2 = 0,</math> to represent the classical description of motion in [[absolute time and space]]: The equations <math>x^\prime = x + vt,\quad t^\prime = t</math> are equivalent to a [[shear mapping]] in linear algebra:<math>\begin{pmatrix}x' \\ t' \end{pmatrix} = \begin{pmatrix}1 & v \\ 0 & 1 \end{pmatrix}\begin{pmatrix}x \\ t \end{pmatrix}.</math> : With dual numbers the mapping is <math>t^\prime + x^\prime \epsilon = (1 + v \epsilon)(t + x \epsilon) = t + (x + vt)\epsilon.</math><ref>[[Isaak Yaglom]] (1979) A simple non-Euclidean geometry and its physical basis : an elementary account of Galilean geometry and the Galilean principle of relativity, Springer {{isbn|0-387-90332-1}}</ref> Another view of [[special relativity]] as a non-Euclidean geometry was advanced by [[Edwin Bidwell Wilson|E. B. Wilson]] and [[Gilbert N. Lewis|Gilbert Lewis]] in ''Proceedings of the [[American Academy of Arts and Sciences]]'' in 1912. They revamped the analytic geometry implicit in the split-complex number algebra into [[synthetic geometry]] of premises and deductions.<ref>[[Edwin B. Wilson]] & [[Gilbert N. Lewis]] (1912) "The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics" Proceedings of the [[American Academy of Arts and Sciences]] 48:387β507</ref><ref>[https://web.archive.org/web/20091027012400/http://ca.geocities.com/cocklebio/synsptm.html Synthetic Spacetime], a digest of the axioms used, and theorems proved, by Wilson and Lewis. Archived by [[WebCite]]</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Non-Euclidean geometry
(section)
Add topic