Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Neural network (machine learning)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Learning rate ==== {{main|Learning rate}} The learning rate defines the size of the corrective steps that the model takes to adjust for errors in each observation.<ref>{{cite arXiv|last=Wei|first=Jiakai|date=26 April 2019|title=Forget the Learning Rate, Decay Loss|class=cs.LG|eprint=1905.00094}}</ref> A high learning rate shortens the training time, but with lower ultimate accuracy, while a lower learning rate takes longer, but with the potential for greater accuracy. Optimizations such as [[Quickprop]] are primarily aimed at speeding up error minimization, while other improvements mainly try to increase reliability. In order to avoid [[oscillation]] inside the network such as alternating connection weights, and to improve the rate of convergence, refinements use an [[adaptive learning rate]] that increases or decreases as appropriate.<ref>{{Cite book|last1=Li|first1=Y.|last2=Fu|first2=Y.|last3=Li|first3=H.|last4=Zhang|first4=S. W.|title=2009 International Conference on Computational Intelligence and Natural Computing |chapter=The Improved Training Algorithm of Back Propagation Neural Network with Self-adaptive Learning Rate |s2cid=10557754|date=1 June 2009|isbn=978-0-7695-3645-3|volume=1|pages=73β76|doi=10.1109/CINC.2009.111}}</ref> The concept of momentum allows the balance between the gradient and the previous change to be weighted such that the weight adjustment depends to some degree on the previous change. A momentum close to 0 emphasizes the gradient, while a value close to 1 emphasizes the last change.{{citation needed|date=October 2024}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Neural network (machine learning)
(section)
Add topic