Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Monotone convergence theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof=== This proof does ''not'' rely on [[Fatou's lemma]]; however, we do explain how that lemma might be used. Those not interested in this independency of the proof may skip the intermediate results below. ====Intermediate results==== We need three basic lemmas. In the proof below, we apply the monotonic property of the Lebesgue integral to non-negative functions only. Specifically (see Remark 4), ====Monotonicity of the Lebesgue integral==== '''lemma 1.''' let the functions <math>f,g : X \to [0,+\infty]</math> be <math>(\Sigma,\operatorname{\mathcal B}_{\bar\R_{\geq 0}})</math>-measurable. *If <math>f \leq g</math> everywhere on <math>X,</math> then :<math>\int_X f\,d\mu \leq \int_X g\,d\mu.</math> *If <math> X_1,X_2 \in \Sigma </math> and <math>X_1 \subseteq X_2, </math> then :<math>\int_{X_1} f\,d\mu \leq \int_{X_2} f\,d\mu.</math> '''Proof.''' Denote by <math>\operatorname{SF}(h)</math> the set of [[simple function|simple]] <math>(\Sigma, \operatorname{\mathcal B}_{\R_{\geq 0}})</math>-measurable functions <math>s:X\to [0,\infty)</math> such that <math>0\leq s\leq h</math> everywhere on <math>X.</math> '''1.''' Since <math>f \leq g,</math> we have <math> \operatorname{SF}(f) \subseteq \operatorname{SF}(g), </math> hence :<math>\int_X f\,d\mu = \sup_{s\in {\rm SF}(f)}\int_X s\,d\mu \leq \sup_{s\in {\rm SF}(g)}\int_X s\,d\mu = \int_X g\,d\mu.</math> '''2.''' The functions <math>f\cdot {\mathbf 1}_{X_1}, f\cdot {\mathbf 1}_{X_2},</math> where <math>{\mathbf 1}_{X_i}</math> is the indicator function of <math>X_i</math>, are easily seen to be measurable and <math>f\cdot{\mathbf 1}_{X_1}\le f\cdot{\mathbf 1}_{X_2}</math>. Now apply '''1'''. =====Lebesgue integral as measure===== '''Lemma 2.''' Let <math>(\Omega,\Sigma,\mu)</math> be a measurable space. Consider a simple <math>(\Sigma,\operatorname{\mathcal B}_{\R_{\geq 0}})</math>-measurable non-negative function <math>s:\Omega\to{\mathbb R_{\geq 0}}</math>. For a measurable subset <math>S \in \Sigma</math>, define :<math>\nu_s(S)=\int_Ss\,d\mu.</math> Then <math>\nu_s</math> is a measure on <math>(\Omega, \Sigma)</math>. ====Proof (lemma 2)==== Write <math>s=\sum^n_{k=1}c_k\cdot {\mathbf 1}_{A_k},</math> with <math>c_k\in{\mathbb R}_{\geq 0}</math> and measurable sets <math>A_k\in\Sigma</math>. Then :<math>\nu_s(S)=\sum_{k =1}^n c_k \mu(S\cap A_k).</math> Since finite positive linear combinations of countably additive set functions are countably additive, to prove countable additivity of <math>\nu_s</math> it suffices to prove that, the set function defined by <math>\nu_A(S) = \mu(A \cap S)</math> is countably additive for all <math>A \in \Sigma</math>. But this follows directly from the countable additivity of <math>\mu</math>. =====Continuity from below===== '''Lemma 3.''' Let <math>\mu</math> be a measure, and <math>S = \bigcup^\infty_{i=1}S_i</math>, where :<math> S_1\subseteq\cdots\subseteq S_i\subseteq S_{i+1}\subseteq\cdots\subseteq S </math> is a non-decreasing chain with all its sets <math>\mu</math>-measurable. Then :<math>\mu(S)=\sup_i\mu(S_i).</math> ====proof (lemma 3)==== Set <math>S_0 = \emptyset</math>, then we decompose <math> S = \coprod_{1 \le i } S_i \setminus S_{i -1} </math> as a countable disjoint union of measurable sets and likewise <math>S_k = \coprod_{1\le i \le k } S_i \setminus S_{i -1} </math> as a finite disjoint union. Therefore <math>\mu(S_k) = \sum_{i=1}^k \mu (S_i \setminus S_{i -1})</math>, and <math>\mu(S) = \sum_{i = 1}^\infty \mu(S_i \setminus S_{i-1})</math> so <math>\mu(S) = \sup_k \mu(S_k)</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Monotone convergence theorem
(section)
Add topic