Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Möbius strip
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== {{reflist|refs= <ref name=9vertex>{{cite journal | last1 = Kühnel | first1 = W. | last2 = Banchoff | first2 = T. F. | author2-link = Thomas Banchoff | doi = 10.1007/BF03026567 | issue = 3 | journal = [[The Mathematical Intelligencer]] | mr = 737686 | pages = 11–22 | title = The 9-vertex complex projective plane | url = https://www.math.brown.edu/tbanchof/howison/newbanchoff/publications/pdfs/9Vertex.pdf | volume = 5 | year = 1983| s2cid = 120926324 }}</ref> <ref name=ancient>{{cite journal | last1 = Cartwright | first1 = Julyan H. E. | author1-link = Julyan Cartwright | last2 = González | first2 = Diego L. | arxiv = 1609.07779 | bibcode = 2016arXiv160907779C | doi = 10.1007/s00283-016-9631-8 | issue = 2 | journal = [[The Mathematical Intelligencer]] | mr = 3507121 | pages = 69–76 | title = Möbius strips before Möbius: topological hints in ancient representations | volume = 38 | year = 2016| s2cid = 119587191 }}</ref> <ref name=architecture>{{cite conference | last1 = Thulaseedas | first1 = Jolly | last2 = Krawczyk | first2 = Robert J. | editor1-last = Barrallo | editor1-first = Javier | editor2-last = Friedman | editor2-first = Nathaniel | editor3-last = Maldonado | editor3-first = Juan Antonio | editor4-last = Mart\'\inez-Aroza | editor4-first = José | editor5-last = Sarhangi | editor5-first = Reza | editor6-last = Séquin | editor6-first = Carlo | contribution = Möbius concepts in architecture | contribution-url = https://archive.bridgesmathart.org/2003/bridges2003-353.html | isbn = 84-930669-1-5 | location = Granada, Spain | pages = 353–360 | publisher = University of Granada | title = Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings | year = 2003}}</ref> <ref name=aromaticity1>{{cite journal | last = Rzepa | first = Henry S. | date = September 2005 | doi = 10.1021/cr030092l | issue = 10 | journal = Chemical Reviews | pages = 3697–3715 | title = Möbius aromaticity and delocalization | volume = 105| pmid = 16218564 }}</ref> <ref name=aromaticity2>{{cite journal | last1 = Yoon | first1 = Zin Seok | last2 = Osuka | first2 = Atsuhiro | last3 = Kim | first3 = Dongho | date = May 2009 | doi = 10.1038/nchem.172 | issue = 2 | journal = Nature Chemistry | pages = 113–122 | title = Möbius aromaticity and antiaromaticity in expanded porphyrins | volume = 1| pmid = 21378823 | bibcode = 2009NatCh...1..113Y }}</ref> <ref name=bacon>{{cite web|url=https://www.theverge.com/2014/9/5/6110563/mobius-bacon-recipe|first=Ross|last=Miller|title=How to make a mathematically-endless strip of bacon|date=September 5, 2014|work=The Verge}}</ref> <ref name=bagel>{{cite web|url=https://www.npr.org/sections/thesalt/2015/08/06/429437860/cut-your-bagel-the-mathematically-correct-way|publisher=NPR|title=Cut Your Bagel The Mathematically Correct Way|work=The Salt|first=Dan|last=Pashman|date=August 6, 2015}}</ref> <ref name=bandband>{{cite magazine|url=https://magnetmagazine.com/2007/08/30/mobius-band-friendly-fire/|title=Mobius Band: Friendly Fire|magazine=[[Magnet (magazine)|Magnet]]|date=August 30, 2007|first=Andrew|last=Parks}}</ref> <ref name=barr>{{cite book | last = Barr | first = Stephen | location = New York | pages = 40–49, 200–201 | publisher = Thomas Y. Crowell Company | title = Experiments in Topology | url = https://archive.org/details/experimentsintop00barr | year = 1964| isbn = ((9780690278620)) }}</ref> <ref name=bartels-hornung>{{cite journal | last1 = Bartels | first1 = Sören | last2 = Hornung | first2 = Peter | doi = 10.1007/s10659-014-9501-6 | issue = 1–2 | journal = Journal of Elasticity | mr = 3326187 | pages = 113–136 | title = Bending paper and the Möbius strip | volume = 119 | year = 2015| s2cid = 119782792 }} Reprinted in {{harvtxt|Fosdick|Fried|2016}}, pp. 113–136. See in particular Section 5.2, pp. 129–130.</ref> <ref name=bickel>{{cite journal | last = Bickel | first = Holger | doi = 10.1007/BF01229209 | issue = 1–2 | journal = Journal of Geometry | mr = 1675956 | pages = 8–15 | title = Duality in stable planes and related closure and kernel operations | volume = 64 | year = 1999| s2cid = 122209943 }}</ref> <ref name=bjorling>{{cite journal | last = Mira | first = Pablo | doi = 10.1016/j.geomphys.2005.08.001 | issue = 9 | journal = Journal of Geometry and Physics | mr = 2240407 | pages = 1506–1515 | title = Complete minimal Möbius strips in <math>\mathbb{R}^n</math> and the Björling problem | volume = 56 | year = 2006| bibcode = 2006JGP....56.1506M }}</ref> <ref name=blackett>{{cite book | last = Blackett | first = Donald W. | isbn = 9781483262536 | page = 195 | publisher = Academic Press | title = Elementary Topology: A Combinatorial and Algebraic Approach | year = 1982}}</ref> <ref name=blanusa>{{cite journal | last = Blanuša | first = Danilo | author-link = Danilo Blanuša | journal = Bulletin International de l'Académie Yougoslave des Sciences et des Beaux-Arts | mr = 71060 | pages = 19–23 | title = Le plongement isométrique de la bande de Möbius infiniment large euclidienne dans un espace sphérique, parabolique ou hyperbolique à quatre dimensions | volume = 12 | year = 1954}}</ref> <ref name=bon-nak>{{cite journal | last1 = Bonnington | first1 = C. Paul | last2 = Nakamoto | first2 = Atsuhiro | doi = 10.1007/s00454-007-9035-9 | issue = 1 | journal = [[Discrete & Computational Geometry]] | mr = 2429652 | pages = 141–157 | title = Geometric realization of a triangulation on the projective plane with one face removed | volume = 40 | year = 2008| s2cid = 10887519 | doi-access = free }}</ref> <ref name=brecher>{{cite conference | last = Brecher | first = Kenneth | editor1-last = Swart | editor1-first = David | editor2-last = Séquin | editor2-first = Carlo H. | editor3-last = Fenyvesi | editor3-first = Kristóf | contribution = Art of infinity | contribution-url = https://archive.bridgesmathart.org/2017/bridges2017-153.html | isbn = 978-1-938664-22-9 | location = Phoenix, Arizona | pages = 153–158 | publisher = Tessellations Publishing | title = Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture | year = 2017}}</ref> <ref name=brehm>{{cite journal | last = Brehm | first = Ulrich | doi = 10.2307/2045508 | issue = 3 | journal = [[Proceedings of the American Mathematical Society]] | mr = 715878 | pages = 519–522 | title = A nonpolyhedral triangulated Möbius strip | volume = 89 | year = 1983| jstor = 2045508 }}</ref> <ref name=bridges>{{cite journal | last = Séquin | first = Carlo H. | author-link = Carlo H. Séquin | date = January 2018 | doi = 10.1080/17513472.2017.1419331 | issue = 2–3 | journal = [[Journal of Mathematics and the Arts]] | pages = 181–194 | title = Möbius bridges | volume = 12| s2cid = 216116708 }}</ref> <ref name=briefmarken>{{cite journal | last1 = Decker | first1 = Heinz | last2 = Stark | first2 = Eberhard | issue = 7 | journal = Praxis der Mathematik | mr = 720681 | pages = 207–215 | title = Möbius-Bänder: ...und natürlich auch auf Briefmarken | volume = 25 | year = 1983}}</ref> <ref name=can-ind>{{cite journal | last1 = Candeal | first1 = Juan Carlos | last2 = Induráin | first2 = Esteban | date = January 1994 | doi = 10.1016/0165-1765(94)90045-0 | issue = 3 | journal = [[Economics Letters]] | pages = 407–412 | title = The Moebius strip and a social choice paradox | volume = 45}}</ref> <ref name=cantwell-conlon>{{cite journal | last1 = Cantwell | first1 = John | last2 = Conlon | first2 = Lawrence | arxiv = 1305.1379 | doi = 10.1007/s10711-014-9975-1 | journal = [[Geometriae Dedicata]] | mr = 3370020 | pages = 27–42 | title = Hyperbolic geometry and homotopic homeomorphisms of surfaces | volume = 177 | year = 2015| s2cid = 119640200 }}</ref> <ref name=chirality>{{cite book | last = Flapan | first = Erica | author-link = Erica Flapan | doi = 10.1017/CBO9780511626272 | isbn = 0-521-66254-0 | mr = 1781912 | pages = [https://books.google.com/books?id=ytjLCgAAQBAJ&pg=PA82 82–83] | publisher = Mathematical Association of America | location = Washington, DC | series = Outlooks | title = When Topology Meets Chemistry: A Topological Look at Molecular Chirality | title-link = When Topology Meets Chemistry | year = 2000}}</ref> <ref name=chords>{{cite journal | last = Tymoczko | first = Dmitri | author-link = Dmitri Tymoczko | bibcode = 2006Sci...313...72T | date = July 7, 2006 | doi = 10.1126/science.1126287 | issue = 5783 | journal = [[Science (journal)|Science]] | jstor = 3846592 | pages = 72–4 | pmid = 16825563 | title = The geometry of musical chords | url = http://dmitri.mycpanel.princeton.edu/voiceleading.pdf | volume = 313| s2cid = 2877171 }}</ref> <ref name=coaster1>{{cite book | last = Easdown | first = Martin | isbn = 9781782001522 | page = 43 | publisher = Bloomsbury Publishing | title = Amusement Park Rides | url = https://books.google.com/books?id=jjTDCwAAQBAJ&pg=PA43 | year = 2012}}</ref> <ref name=coaster2>{{cite book | last = Hook | first = Patrick | isbn = 9780785835776 | page = 20 | publisher = Chartwell Books | title = Ticket To Ride: The Essential Guide to the World's Greatest Roller Coasters and Thrill Rides | url = https://books.google.com/books?id=a7vdDwAAQBAJ&pg=PA20 | year = 2019}}</ref> <ref name=courant>{{cite journal | last = Courant | first = Richard | author-link = Richard Courant | doi = 10.1080/00029890.1940.11990957 | journal = [[The American Mathematical Monthly]] | jstor = 2304225 | mr = 1622 | pages = 167–174 | title = Soap film experiments with minimal surfaces | volume = 47 | year = 1940| issue = 3 }}</ref> <ref name=crowell>{{cite magazine|magazine=Scientific American|last=Crowell|first=Rachel|date=September 12, 2023|title=Mathematicians solve 50-year-old Möbius strip puzzle|url=https://www.scientificamerican.com/article/mathematicians-solve-50-year-old-moebius-strip-puzzle/}}</ref> <ref name=darkside>{{cite journal | last = Schwarz | first = Gideon E. | doi = 10.1080/00029890.1990.11995680 | issue = 10 | journal = [[The American Mathematical Monthly]] | jstor = 2324325 | mr = 1079975 | pages = 890–897 | title = The dark side of the Moebius strip | volume = 97 | year = 1990}}</ref> <ref name=ddg>{{cite web | last = Knöppel | first = Felix | date = Summer 2019 | title = Tutorial 3: Lawson's Minimal Surfaces and the Sudanese Möbius Band | url = https://dgd.service.tu-berlin.de/wordpress/ddg2019/2019/04/29/tutorial-3-lawsons-minimal-surfaces-and-the-sudanese-mobius-band/ | work = DDG2019: Visualization course at TU Berlin}}</ref> <ref name=defy>{{cite magazine|url=https://www.quantamagazine.org/mobius-strips-defy-a-link-with-infinity-20190220/|title=Möbius strips defy a link with infinity|first=Evelyn|last=Lamb|magazine=[[Quanta Magazine]]|date=February 20, 2019}}</ref> <ref name=dna>{{cite web|url=https://arstechnica.com/science/2010/10/chemical-origami-used-to-create-a-dna-mobius-strip/|title=Chemical origami used to create a DNA Möbius strip|work=[[Ars Technica]]|first=Diana|last=Gitig|date=October 18, 2010|access-date=2022-03-28}}</ref> <ref name=dooner-seirig>{{cite book | last1 = Dooner | first1 = David B. | last2 = Seireg | first2 = Ali | contribution = 3.4.2 The cylindroid | contribution-url = https://books.google.com/books?id=xcjM2xmxvBAC&pg=PA135 | isbn = 9780471045977 | pages = 135–137 | publisher = John Wiley & Sons | series = Wiley Series in Design Engineering | title = The Kinematic Geometry of Gearing: A Concurrent Engineering Approach | volume = 3 | year = 1995}}</ref> <ref name=dundas>{{cite book | last = Dundas | first = Bjørn Ian | contribution = Example 5.1.3: The unbounded Möbius band | doi = 10.1017/9781108349130 | isbn = 978-1-108-42579-7 | mr = 3793640 | page = https://books.google.com/books?id=7a1eDwAAQBAJ&pg=PA101 | publisher = Cambridge University Press, Cambridge | series = Cambridge Mathematical Textbooks | title = A Short Course in Differential Topology | year = 2018| s2cid = 125997451 }}</ref> <ref name=emmer>{{cite journal | last = Emmer | first = Michele | date = Spring 1980 | issue = 2 | journal = [[Leonardo (journal)|Leonardo]] | pages = 108–111 | title = Visual art and mathematics: the Moebius band | url = https://muse.jhu.edu/article/599337/summary | volume = 13| doi = 10.2307/1577979 | jstor = 1577979 | s2cid = 123908555 }}</ref> <ref name=escher1>{{cite book | last = Crato | first = Nuno | contribution = Escher and the Möbius strip | doi = 10.1007/978-3-642-04833-3_29 | pages = 123–126 | publisher = Springer | title = Figuring It Out: Entertaining Encounters with Everyday Math | year = 2010| isbn = 978-3-642-04832-6 }}</ref> <ref name=escher2>{{cite web|url=https://www.escherinhetpaleis.nl/escher-today/mobius-strip-i/?lang=en|title=Möbius Strip I|publisher=[[Escher in the Palace]]|first=Erik|last=Kersten|date=March 13, 2017|access-date=2022-04-17}}</ref> <ref name=expo74>{{cite news |url=https://news.google.com/newspapers?id=v9kvAAAAIBAJ&pg=5133%2C4421507 |newspaper=[[The Spokesman-Review]] |title=Expo '74 symbol selected |date=March 12, 1972 |page=1}}</ref> <ref name=flapan>{{cite book | last = Flapan | first = Erica | author-link = Erica Flapan | doi = 10.1090/mbk/096 | isbn = 978-1-4704-2535-7 | mr = 3443369 | pages = 99–100 | publisher = American Mathematical Society | location = Providence, Rhode Island | title = Knots, Molecules, and the Universe: An Introduction to Topology | url = https://books.google.com/books?id=q4RbCwAAQBAJ&pg=PA99 | year = 2016}}</ref> <ref name=fomenko-kunii>{{cite book | last1 = Fomenko | first1 = Anatolij T. | author1-link = Anatoly Fomenko | last2 = Kunii | first2 = Tosiyasu L. | isbn = 9784431669562 | page = 269 | publisher = Springer | title = Topological Modeling for Visualization | url = https://books.google.com/books?id=8bn0CAAAQBAJ&pg=PA269 | year = 2013}}</ref> <ref name=fuchs-tabachnikov>{{cite book | last1 = Fuchs | first1 = Dmitry | author1-link = Dmitry Fuchs | last2 = Tabachnikov | first2 = Serge | author2-link = Sergei Tabachnikov | contribution = Lecture 14: Paper Möbius band | doi = 10.1090/mbk/046 | isbn = 978-0-8218-4316-1 | mr = 2350979 | pages = 199–206 | publisher = American Mathematical Society | location = Providence, Rhode Island | title = Mathematical Omnibus: Thirty Lectures on Classic Mathematics | url = http://www.math.psu.edu/tabachni/Books/taba.pdf | archive-url = https://web.archive.org/web/20160424020238/http://www.math.psu.edu/tabachni/Books/taba.pdf | url-status = dead | archive-date = 2016-04-24 | year = 2007}}</ref> <ref name=francis>{{cite book | last = Francis | first = George K. | contribution = Plücker conoid | isbn = 0-387-96426-6 | mr = 880519 | pages = 81–83 | publisher = Springer-Verlag, New York | title = A Topological Picturebook | year = 1987}}</ref> <ref name=franzoni>{{cite journal | last = Franzoni | first = Gregorio | doi = 10.1090/noti880 | issue = 8 | journal = Notices of the American Mathematical Society | mr = 2985809 | pages = 1076–1082 | title = The Klein bottle: variations on a theme | volume = 59 | year = 2012| doi-access = free }}</ref> <ref name=frolkina>{{cite journal | last = Frolkina | first = Olga D. | doi = 10.1142/S0218216518420051 | issue = 9 | journal = [[Journal of Knot Theory and Its Ramifications]] | mr = 3848635 | pages = 1842005, 9 | title = Pairwise disjoint Moebius bands in space | volume = 27 | year = 2018| arxiv = 2212.02983 | s2cid = 126421578 }}</ref> <ref name=gardner>{{cite book | last = Gardner | first = Martin | author-link = Martin Gardner | contribution = The Afghan Bands | contribution-url = https://books.google.com/books?id=WkS4BQAAQBAJ&pg=PA70 | location = New York | pages = 70–73 | publisher = Dover Books | title = Mathematics, Magic and Mystery | year = 1956}}</ref> <ref name=gdrive>{{cite news|url=https://sg.news.yahoo.com/did-google-drive-copy-icon-091053776.html|title=Did Google Drive Copy its Icon From a Chinese App?|first=Steven|last=Millward|date=April 30, 2012|work=Tech in Asia|via=Yahoo! News|access-date=2022-03-27}}</ref> <ref name=godinho-natario>{{cite book | last1 = Godinho | first1 = Leonor | last2 = Natário | first2 = José | doi = 10.1007/978-3-319-08666-8 | isbn = 978-3-319-08665-1 | mr = 3289090 | pages = 152–153 | publisher = Springer, Cham | series = Universitext | title = An Introduction to Riemannian Geometry: With Applications to Mechanics and Relativity | url = https://books.google.com/books?id=oV4qBAAAQBAJ&pg=PA152 | year = 2014}}</ref> <ref name=gor-oni-vin>{{cite book | last1 = Gorbatsevich | first1 = V. V. | last2 = Onishchik | first2 = A. L. | last3 = Vinberg | first3 = È. B. | doi = 10.1007/978-3-642-57999-8 | isbn = 3-540-18697-2 | mr = 1306737 | pages = 164–166 | publisher = Springer-Verlag, Berlin | series = Encyclopaedia of Mathematical Sciences | title = Lie groups and Lie algebras I: Foundations of Lie Theory; Lie Transformation Groups | url = https://books.google.com/books?id=9UCOjHdD_hgC&pg=PA164 | volume = 20 | year = 1993}}</ref> <ref name=graphene>{{cite journal | last1 = Yamashiro | first1 = Atsushi | last2 = Shimoi | first2 = Yukihiro | last3 = Harigaya | first3 = Kikuo | last4 = Wakabayashi | first4 = Katsunori | arxiv = cond-mat/0309636 | bibcode = 2004PhyE...22..688Y | doi = 10.1016/j.physe.2003.12.100 | issue = 1–3 | journal = Physica E | pages = 688–691 | title = Novel electronic states in graphene ribbons: competing spin and charge orders | volume = 22 | year = 2004| s2cid = 17102453 }}</ref> <ref name=halpern-weaver>{{cite journal | last1 = Halpern | first1 = B. | last2 = Weaver | first2 = C. | doi = 10.2307/1997711 | journal = Transactions of the American Mathematical Society | mr = 474388 | pages = 41–70 | title = Inverting a cylinder through isometric immersions and isometric embeddings | volume = 230 | year = 1977| jstor = 1997711 | doi-access = free }}</ref> <ref name=hilbert-cohn-vossen>{{cite book | last1 = Hilbert | first1 = David | author1-link = David Hilbert | last2 = Cohn-Vossen | first2 = Stephan | edition = 2nd | isbn = 978-0-8284-1087-8 | pages = 315–316 | publisher = Chelsea | title = Geometry and the Imagination | title-link = Geometry and the Imagination | year = 1990}}</ref> <ref name=huggett-jordan>{{cite book | last1 = Huggett | first1 = Stephen | last2 = Jordan | first2 = David | edition = Revised | isbn = 978-1-84800-912-7 | mr = 2483686 | page = 57 | publisher = Springer-Verlag | title = A Topological Aperitif | year = 2009}}</ref> <ref name=impa>{{cite web|url=https://impa.br/en_US/noticias/para-quem-e-fa-do-impa-dez-curiosidades-sobre-o-instituto/|title=Símbolo do IMPA|work=Para quem é fã do IMPA, dez curiosidades sobre o instituto|publisher=IMPA|access-date=2022-03-27|date=May 7, 2020}}</ref> <ref name=isham>{{cite book | last = Isham | first = Chris J. | edition = 2nd | isbn = 981-02-3555-0 | mr = 1698234 | page = 269 | publisher = World Scientific | series = World Scientific lecture notes in physics | title = Modern Differential Geometry for Physicists | url = https://books.google.com/books?id=8bn0CAAAQBAJ&pg=PA269 | volume = 61 | year = 1999}}</ref> <ref name=jab-rad-saz>{{cite journal | last1 = Jablan | first1 = Slavik | last2 = Radović | first2 = Ljiljana | last3 = Sazdanović | first3 = Radmila | doi = 10.1007/s10910-011-9884-6 | issue = 10 | journal = Journal of Mathematical Chemistry | mr = 2846715 | pages = 2250–2267 | title = Nonplanar graphs derived from Gauss codes of virtual knots and links | volume = 49 | year = 2011| s2cid = 121332704 }}</ref> <ref name=kazakh>{{cite news | last = Wainwright | first = Oliver | date = October 17, 2017 | newspaper = [[The Guardian]] | title = 'Norman said the president wants a pyramid': how starchitects built Astana | url = https://www.theguardian.com/cities/2017/oct/17/norman-foster-president-pyramid-architects-built-astana}}</ref> <ref name=kuiper>{{cite journal | last = Kuiper | first = Nicolaas H. | author-link = Nicolaas Kuiper | doi = 10.4310/jdg/1214430493 | journal = [[Journal of Differential Geometry]] | mr = 314057 | pages = 271–283 | title = Tight topological embeddings of the Moebius band | volume = 6 | year = 1972| issue = 3 | doi-access = free }}</ref> <ref name=kyle>{{cite journal | last = Kyle | first = R. H. | journal = Proceedings of the Royal Irish Academy, Section A | jstor = 20488581 | mr = 0091480 | pages = 131–136 | title = Embeddings of Möbius bands in 3-dimensional space | volume = 57 | year = 1955}}</ref> <ref name=larsen>{{cite conference | last = Larsen | first = Mogens Esrom | editor1-last = Guy | editor1-first = Richard K. | editor1-link = Richard K. Guy | editor2-last = Woodrow | editor2-first = Robert E. | contribution = Misunderstanding my mazy mazes may make me miserable | isbn = 0-88385-516-X | mr = 1303141 | pages = 289–293 | publisher = Mathematical Association of America | location = Washington, DC | series = MAA Spectrum | title = Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History held at the University of Calgary, Calgary, Alberta, August 1986 | year = 1994}}. See [https://books.google.com/books?id=FsH2DwAAQBAJ&pg=PA292 Figure 7, p. 292].</ref> <ref name=lawson>{{cite journal | last = Lawson | first = H. Blaine Jr. | author-link = H. Blaine Lawson | doi = 10.2307/1970625 | journal = [[Annals of Mathematics]] | jstor = 1970625 | mr = 270280 | pages = 335–374 | series = Second Series | title = Complete minimal surfaces in <math>S^3</math> | volume = 92 | year = 1970| issue = 3 }} See Section 7, pp. 350–353, where the Klein bottle is denoted <math>\tau_{1,2}</math>.</ref> <ref name=lopez-martin>{{cite journal | last1 = López | first1 = Francisco J. | last2 = Martín | first2 = Francisco | doi = 10.1353/ajm.1997.0004 | issue = 1 | journal = [[American Journal of Mathematics]] | mr = 1428058 | pages = 55–81 | title = Complete nonorientable minimal surfaces with the highest symmetry group | volume = 119 | year = 1997| s2cid = 121366986 }}</ref> <ref name=magic>{{cite book | last = Prevos | first = Peter | location = Kangaroo Flat | publisher = Third Hemisphere | title = The Möbius Strip in Magic: A Treatise on the Afghan Bands | year = 2018 | url = https://horizonofreason.com/pdf/afghan-bands-sample.pdf }}</ref> <ref name=mangahas>{{cite book | last = Mangahas | first = Johanna | editor1-last = Clay | editor1-first = Matt | editor2-last = Margalit | editor2-first = Dan | contribution = Office Hour Five: The Ping-Pong Lemma | date = July 2017 | doi = 10.1515/9781400885398 | pages = 85–105 | publisher = Princeton University Press | title = Office Hours with a Geometric Group Theorist| isbn = 9781400885398 }} See in particular Project 7, pp. 104–105.</ref> <ref name=maps1>{{cite journal | last = Tobler | first = Waldo R. | author-link = Waldo R. Tobler | journal = Surveying & Mapping | page = 486 | title = A world map on a Möbius strip | url = https://books.google.com/books?id=2j44AAAAIAAJ&pg=PA486 | volume = 21 | year = 1961}}</ref> <ref name=maps2>{{cite journal | last1 = Kumler | first1 = Mark P. | author1-link = Waldo R. Tobler | last2 = Tobler | first2 = Waldo R. | date = January 1991 | doi = 10.1559/152304091783786781 | issue = 4 | journal = Cartography and Geographic Information Systems | pages = 275–276 | title = Three world maps on a Moebius strip | volume = 18| bibcode = 1991CGISy..18..275K }}</ref> <ref name=maschke>{{cite journal | last = Maschke | first = Heinrich | author-link = Heinrich Maschke | doi = 10.2307/1986401 | issue = 1 | journal = [[Transactions of the American Mathematical Society]] | mr = 1500522 | page = 39 | title = Note on the unilateral surface of Moebius | volume = 1 | year = 1900| jstor = 1986401 | doi-access = free }}</ref> <ref name=massey>{{cite book | last = Massey | first = William S. | isbn = 0-387-97430-X | mr = 1095046 | page = 49 | publisher = Springer-Verlag | location = New York | series = Graduate Texts in Mathematics | title = A Basic Course in Algebraic Topology | url = https://books.google.com/books?id=laSfDwAAQBAJ&pg=PA49 | volume = 127 | year = 1991}}</ref> <ref name=meeks>{{cite journal | last = Meeks | first = William H. III | author-link = William Hamilton Meeks, III | doi = 10.1215/S0012-7094-81-04829-8 | issue = 3 | journal = [[Duke Mathematical Journal]] | mr = 630583 | pages = 523–535 | title = The classification of complete minimal surfaces in <math>\mathbb{R}^3</math> with total curvature greater than <math>-8\pi</math> | volume = 48 | year = 1981}}</ref> <ref name=melikhov>{{cite journal | last = Melikhov | first = Sergey A. | doi = 10.1142/s0218216519710019 | issue = 7 | journal = [[Journal of Knot Theory and Its Ramifications]] | mr = 3975576 | pages = 1971001, 3 | title = A note on O. Frolkina's paper "Pairwise disjoint Moebius bands in space" | volume = 28 | year = 2019| arxiv = 1810.04089 | s2cid = 119179202 }}</ref> <ref name=music>{{cite web | last = Moskowitz | first = Clara | author-link = Clara Moskowitz | date = May 6, 2008 | access-date = 2022-03-21 | title = Music reduced to beautiful math | url = https://www.livescience.com/strangenews/080507-math-music.html | website = [[Live Science]]}}</ref> <ref name=nak-tsu>{{cite journal | last1 = Nakamoto | first1 = Atsuhiro | last2 = Tsuchiya | first2 = Shoichi | doi = 10.1016/j.disc.2011.06.007 | issue = 14 | journal = [[Discrete Mathematics (journal)|Discrete Mathematics]] | mr = 2921579 | pages = 2135–2139 | title = On geometrically realizable Möbius triangulations | volume = 312 | year = 2012| doi-access = free }}</ref> <ref name=nascar>{{cite magazine | last = Muret | first = Don | date = May 17, 2010 | magazine = Sports Business Journal | title = NASCAR Hall of Fame 'looks fast sitting still' | url = https://www.sportsbusinessjournal.com/Journal/Issues/2010/05/17/This-Weeks-News/NASCAR-Hall-Of-Fame-Looks-Fast-Sitting-Still.aspx}}</ref> <ref name=olson>{{cite book | last = Byers | first = Mark | isbn = 9780198813255 | pages = 77–78 | publisher = Oxford University Press | title = Charles Olson and American Modernism: The Practice of the Self | url = https://books.google.com/books?id=U1ZYDwAAQBAJ&pg=PA77 | year = 2018}}</ref> <ref name=optimal>{{cite arXiv|first=Richard|last=Schwartz|author-link=Richard Schwartz (mathematician)|title=The optimal paper Moebius band|date=2023 |eprint=2308.12641|class=math.MG}}</ref> <ref name=paradromic>{{cite journal | last = Bennett | first = G. T. | author-link = Geoffrey Thomas Bennett | date = June 1923 | doi = 10.1038/111882b0 | issue = 2800 | journal = [[Nature (journal)|Nature]] | page = 882 | title = Paradromic rings | volume = 111| bibcode = 1923Natur.111R.882B | s2cid = 4099647 | doi-access = free }}</ref> <ref name=parameterization>{{cite book | last = Junghenn | first = Hugo D. | isbn = 978-1-4822-1927-2 | mr = 3309241 | page = 430 | publisher = CRC Press | location = Boca Raton, Florida | title = A Course in Real Analysis | url = https://books.google.com/books?id=nE63BgAAQBAJ&pg=PA430 | year = 2015}}</ref> <ref name=parker>{{cite book | last = Parker | first = Phillip E. | editor-last = Del Riego | editor-first = L. | contribution = Spaces of geodesics | contribution-url = http://www.math.wichita.edu/~pparker/research/sog/sog1.zip | mr = 1304924 | pages = 67–79 | publisher = Soc. Mat. Mexicana, México | series = Aportaciones Mat. Notas Investigación | title = Differential Geometry Workshop on Spaces of Geometry (Guanajuato, 1992) | volume = 8 | year = 1993 | access-date = 2022-03-21 | archive-date = 2016-03-13 | archive-url = https://web.archive.org/web/20160313115359/http://www.math.wichita.edu/~pparker/research/sog/sog1.zip | url-status = bot: unknown }}</ref> <ref name=pasta>{{cite news|newspaper=[[The New York Times]]|title=Pasta Graduates From Alphabet Soup to Advanced Geometry|url=https://www.nytimes.com/2012/01/10/science/pasta-inspires-scientists-to-use-their-noodle.html|first=Kenneth|last=Chang|date=January 9, 2012}}</ref> <ref name=peterson>{{cite book | last = Peterson | first = Ivars | author-link = Ivars Peterson | contribution = Recycling topology | contribution-url = https://books.google.com/books?id=RMH2DwAAQBAJ&pg=PA31 | isbn = 0-88385-537-2 | mr = 1874198 | pages = 31–35 | publisher = Mathematical Association of America, Washington, DC | series = MAA Spectrum | title = Mathematical Treks: From Surreal Numbers to Magic Circles | year = 2002}}</ref> <ref name=phillips>{{cite magazine | last = Phillips | first = Tony | date = November 25, 2016 | magazine = [[Plus Magazine]] | title = Bach and the musical Möbius strip | url = https://plus.maths.org/content/topology-music-m-bius-strip}} Reprinted from an American Mathematical Society Feature Column.</ref> <ref name=pickover>{{cite book | last = Pickover | first = Clifford A. | author-link = Clifford A. Pickover | isbn = 978-1-56025-826-1 | pages = 28–29 | publisher = Thunder's Mouth Press | title = The Möbius Strip: Dr. August Möbius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology | url = https://archive.org/details/mbiusstripdrau00pick | year = 2005}}</ref> <ref name=polarization>{{cite journal | last1 = Bauer | first1 = Thomas | last2 = Banzer | first2 = Peter | last3 = Karimi | first3 = Ebrahim | last4 = Orlov | first4 = Sergej | last5 = Rubano | first5 = Andrea | last6 = Marrucci | first6 = Lorenzo | last7 = Santamato | first7 = Enrico | last8 = Boyd | first8 = Robert W. | last9 = Leuchs | first9 = Gerd | date = February 2015 | doi = 10.1126/science.1260635 | issue = 6225 | journal = [[Science (journal)|Science]] | pages = 964–966 | title = Observation of optical polarization Möbius strips | volume = 347| pmid = 25636796 | bibcode = 2015Sci...347..964B | s2cid = 206562350 }}</ref> <ref name=pook>{{cite book | last = Pook | first = Les | contribution = 4.2: The trihexaflexagon revisited | contribution-url = https://books.google.com/books?id=MlKL1aG781QC&pg=PA33 | doi = 10.1017/CBO9780511543302 | isbn = 0-521-81970-9 | mr = 2008500 | pages = 33–36 | publisher = Cambridge University Press | location = Cambridge, UK | title = Flexagons Inside Out | year = 2003}}</ref> <ref name=ramirez-seade>{{cite book | last1 = Ramírez Galarza | first1 = Ana Irene | last2 = Seade | first2 = José | isbn = 978-3-7643-7517-1 | location = Basel | mr = 2305055 | pages = 83–88, 157–163 | publisher = Birkhäuser Verlag | title = Introduction to Classical Geometries | year = 2007}}</ref> <ref name=resistor>{{cite magazine | date = September 25, 1964 | issue = 13 | magazine = [[Time (magazine)|Time]] | title = Making resistors with math | url = https://content.time.com/time/subscriber/article/0,33009,876181,00.html | volume = 84}}</ref> <ref name=resonator>{{cite journal | last = Pond | first = J. M. | bibcode = 2000ITMTT..48.2465P | doi = 10.1109/22.898999 | issue = 12 | journal = IEEE Transactions on Microwave Theory and Techniques | pages = 2465–2471 | title = Mobius dual-mode resonators and bandpass filters | volume = 48 | year = 2000}}</ref> <ref name=resonator2>{{cite journal | last1 = Rohde | first1 = Ulrich L. | last2 = Poddar | first2 = Ajay | last3 = Sundararajan | first3 = D. | date = November 2013 | issue = 11 | journal = Microwave Journal | title = Printed resonators: Möbius strip theory and applications | url = https://synergymwave.com/articles/2013/11/article.pdf | volume = 56}}</ref> <ref name=reyes>{{cite web|url=https://news.artnet.com/art-world/pedro-reyes-makes-an-infinite-love-seat-133150|work=Artnet News|title=Pedro Reyes Makes an Infinite Love Seat|first=Blake|last=Gopnik|date=October 17, 2014}}</ref> <ref name=richeson>{{cite book | last = Richeson | first = David S. | author-link = David Richeson | isbn = 978-0-691-12677-7 | mr = 2440945 | page = [https://books.google.com/books?id=BFeXDwAAQBAJ&pg=PA171 171] | publisher = Princeton University Press | location = Princeton, New Jersey | title = Euler's Gem: The Polyhedron Formula and the Birth of Topology | title-link = Euler's Gem | year = 2008}}</ref> <ref name=ringel-youngs>{{cite journal | last1 = Ringel | first1 = G. | author1-link = Gerhard Ringel | last2 = Youngs | first2 = J. W. T. | bibcode = 1968PNAS...60..438R | doi = 10.1073/pnas.60.2.438 | doi-access = free | issue = 2 | journal = [[Proceedings of the National Academy of Sciences of the United States of America]] | volume = 60 | pages = 438–445 | mr = 0228378 | pmc = 225066 | pmid = 16591648 | title = Solution of the Heawood map-coloring problem | year = 1968}}</ref> <ref name=ringvan>{{cite magazine|url=https://www.pressreader.com/uk/prog/20210209/281535113669133|title=Ring Van Möbius|magazine=[[Prog (magazine)|Prog]]|date=February 9, 2021|first=Dom|last=Lawson}}</ref> <ref name=roman>{{cite journal | last = Larison | first = Lorraine L. | bibcode=1973AmSci..61..544L | issue = 5 | journal = [[American Scientist]] | jstor = 27843983 | pages = 544–547 | title = The Möbius band in Roman mosaics | volume = 61 | year = 1973}}</ref> <ref name=rouseball>{{cite book|title=Mathematical Recreations and Problems of Past and Present Times|edition=2nd|publisher=Macmillan and co.|location=London & New York|year=1892|last=Rouse Ball|first=W. W.|author-link=W. W. Rouse Ball|contribution=Paradromic rings|pages=53–54|contribution-url=https://books.google.com/books?id=IwDvAAAAMAAJ&pg=PA53}}</ref> <ref name=sadowsky-translation>{{cite journal | last1 = Hinz | first1 = Denis F. | last2 = Fried | first2 = Eliot | doi = 10.1007/s10659-014-9490-5 | issue = 1–2 | journal = Journal of Elasticity | mr = 3326180 | pages = 3–6 | title = Translation of Michael Sadowsky's paper "An elementary proof for the existence of a developable Möbius band and the attribution of the geometric problem to a variational problem" | volume = 119 | year = 2015| arxiv = 1408.3034 | s2cid = 119733903 }} Reprinted in {{cite book | last1 = Fosdick | first1 = Roger | last2 = Fried | first2 = Eliot | doi = 10.1007/978-94-017-7300-3 | isbn = 978-94-017-7299-0 | mr = 3381564 | pages = 3–6 | publisher = Springer, Dordrecht | title = The Mechanics of Ribbons and Möbius Bands | year = 2016| url = https://openresearch.lsbu.ac.uk/download/7bba3852893aa5916361a1c98259f2aee64381672fa60a5dcfb7e926228a4197/6644159/Starostin-Heijden2015_Article_EquilibriumShapesWithStressLoc.pdf }}</ref> <ref name=schleimer-segerman>{{cite conference | last1 = Schleimer | first1 = Saul | last2 = Segerman | first2 = Henry | editor1-last = Bosch | editor1-first = Robert | editor2-last = McKenna | editor2-first = Douglas | editor3-last = Sarhangi | editor3-first = Reza | arxiv = 1204.4952 | contribution = Sculptures in {{math|''S''<sup>3</sup>}}<!-- html math so formula is properly bluelinked --> | contribution-url = https://archive.bridgesmathart.org/2012/bridges2012-103.html | isbn = 978-1-938664-00-7 | location = Phoenix, Arizona | pages = 103–110 | publisher = Tessellations Publishing | title = Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture | year = 2012}}</ref> <ref name=schwartz>{{cite journal | last = Schwartz | first = Richard Evan | author-link = Richard Schwartz (mathematician) | arxiv = 2008.11610 | doi = 10.1007/s10711-021-00648-5 | journal = [[Geometriae Dedicata]] | mr = 4330341 | pages = 255–267 | title = An improved bound on the optimal paper Moebius band | volume = 215 | year = 2021| s2cid = 220279013 }}</ref> <ref name=schwarz>{{cite journal | last = Schwarz | first = Gideon | issue = 1 | journal = [[Pacific Journal of Mathematics]] | mr = 1047406 | pages = 195–200 | title = A pretender to the title 'canonical Moebius strip' | url = https://projecteuclid.org/euclid.pjm/1102646207 | volume = 143 | year = 1990| doi = 10.2140/pjm.1990.143.195 | doi-access = free }}</ref> <ref name=seifert-threlfall>{{cite book | last1 = Seifert | first1 = Herbert | author1-link = Herbert Seifert | last2 = Threlfall | first2 = William | author2-link = William Threlfall | translator-last = Goldman | translator-first = Michael A. | isbn = 0-12-634850-2 | location = New York & London | mr = 575168 | page = 12 | publisher = Academic Press | series = Pure and Applied Mathematics | title = A Textbook of Topology | url = https://books.google.com/books?id=rsb8zjP0XHoC&pg=PA12 | volume = 89 | year = 1980}}</ref> <ref name=soap>{{cite journal | last1 = Goldstein | first1 = Raymond E. | author1-link = Raymond E. Goldstein | last2 = Moffatt | first2 = H. Keith | author2-link = Keith Moffatt | last3 = Pesci | first3 = Adriana I. | author3-link = Adriana Pesci | last4 = Ricca | first4 = Renzo L. | author4-link = Renzo L. Ricca | date = December 2010 | doi = 10.1073/pnas.1015997107 | issue = 51 | journal = [[Proceedings of the National Academy of Sciences]] | pages = 21979–21984 | title = Soap-film Möbius strip changes topology with a twist singularity | volume = 107| bibcode = 2010PNAS..10721979G | doi-access = free | pmc = 3009808}}</ref> <ref name=spivak>{{cite book | last = Spivak | first = Michael | author-link = Michael Spivak | edition = 2nd | location = Wilmington, Delaware | page = 591 | publisher = Publish or Perish | title = A Comprehensive Introduction to Differential Geometry, Volume I | year = 1979}}</ref> <ref name=split-tori>{{cite conference | last = Séquin | first = Carlo H. | author-link = Carlo H. Séquin | editor1-last = Sarhangi | editor1-first = Reza | editor2-last = Moody | editor2-first = Robert V. | contribution = Splitting tori, knots, and Moebius bands | contribution-url = https://archive.bridgesmathart.org/2005/bridges2005-211.html | isbn = 0-9665201-6-5 | location = Southwestern College, Winfield, Kansas | pages = 211–218 | publisher = Bridges Conference | title = Renaissance Banff: Mathematics, Music, Art, Culture | year = 2005}}</ref> <ref name=starostin-vdh>{{cite journal | last1 = Starostin | first1 = E. L. | last2 = van der Heijden | first2 = G. H. M. | doi = 10.1007/s10659-014-9495-0 | issue = 1–2 | journal = Journal of Elasticity | mr = 3326186 | pages = 67–112 | title = Equilibrium shapes with stress localisation for inextensible elastic Möbius and other strips | volume = 119 | year = 2015| s2cid = 53462568 | doi-access = free }} Reprinted in {{harvtxt|Fosdick|Fried|2016}}, pp. 67–112.</ref> <ref name=stillwell>{{cite book | last = Stillwell | first = John | author-link = John Stillwell | contribution = 4.6 Classification of isometries | doi = 10.1007/978-1-4612-0929-4 | isbn = 0-387-97743-0 | mr = 1171453 | pages = 96–98 | publisher = Springer | location = Cham | series = Universitext | title = Geometry of Surfaces | year = 1992}}</ref> <ref name=sudanese>{{cite web | last = Gunn | first = Charles | access-date=2022-03-17 | title = Sudanese Möbius Band | url = https://vimeo.com/286360639 | website = Vimeo| date = August 23, 2018 }}</ref> <ref name=synthesis>{{cite journal | last1 = Walba | first1 = David M. | last2 = Richards | first2 = Rodney M. | last3 = Haltiwanger | first3 = R. Curtis | date = June 1982 | doi = 10.1021/ja00375a051 | issue = 11 | journal = [[Journal of the American Chemical Society]] | pages = 3219–3221 | title = Total synthesis of the first molecular Moebius strip | volume = 104| bibcode = 1982JAChS.104.3219W }}</ref> <ref name=systolic>{{cite journal | last1 = Pesci | first1 = Adriana I. | author1-link = Adriana Pesci | last2 = Goldstein | first2 = Raymond E. | author2-link = Raymond E. Goldstein | last3 = Alexander | first3 = Gareth P. | last4 = Moffatt | first4 = H. Keith | author4-link = Keith Moffatt | doi = 10.1103/PhysRevLett.114.127801 | issue = 12 | journal = [[Physical Review Letters]] | mr = 3447638 | page = 127801 | title = Instability of a Möbius strip minimal surface and a link with systolic geometry | volume = 114 | year = 2015| pmid = 25860771 | bibcode = 2015PhRvL.114l7801P | url = http://wrap.warwick.ac.uk/74286/7/WRAP_PRL114_127801_2015_alexander.pdf }}</ref> <ref name=szilassi>{{cite journal | last = Szilassi | first = Lajos | author-link = Lajos Szilassi | doi = 10.1007/s00454-007-9033-y | issue = 3 | journal = [[Discrete & Computational Geometry]] | mr = 2443291 | pages = 395–400 | title = A polyhedral model in Euclidean 3-space of the six-pentagon map of the projective plane | volume = 40 | year = 2008| s2cid = 38606607 | doi-access = free }}</ref> <ref name=tietze>{{cite journal | last = Tietze | first = Heinrich | author-link = Heinrich Tietze | journal = Jahresbericht der Deutschen Mathematiker-Vereinigung | pages = 155–159 | title = Einige Bemerkungen zum Problem des Kartenfärbens auf einseitigen Flächen | url = https://sites.math.washington.edu/~mathcircle/circle/2014-15/advanced/mc-14a-w8.pdf | volume = 19 | year = 1910}}</ref> <ref name=tuckerman>{{cite journal | last = Tuckerman | first = Bryant | author-link = Bryant Tuckerman | doi = 10.2307/2305482 | journal = American Mathematical Monthly | jstor = 2305482 | mr = 24138 | pages = 309–311 | title = A non-singular polyhedral Möbius band whose boundary is a triangle | volume = 55 | year = 1948| issue = 5 }}</ref> <ref name=woll>{{cite journal | last = Woll | first = John W. Jr. | date = Spring 1971 | doi = 10.2307/3026946 | issue = 1 | journal = [[The Two-Year College Mathematics Journal]] | jstor = 3026946 | pages = 5–18 | title = One-sided surfaces and orientability | volume = 2}}</ref> <ref name=wunderlich>{{cite journal | last = Wunderlich | first = W. | doi = 10.1007/BF01299052 | journal = [[Monatshefte für Mathematik]] | mr = 143115 | pages = 276–289 | title = Über ein abwickelbares Möbiusband | volume = 66 | year = 1962| issue = 3 | s2cid = 122215321 }}</ref> <ref name=zimmermann>{{cite news|first=Nancy J. |last=Thomas |title=Making a Mobius a matter of mathematics|newspaper=[[The Times (Trenton)]]|date=October 4, 1998|page=aa3 |url= https://infoweb.newsbank.com/apps/news/openurl?ctx_ver=z39.88-2004&rft_id=info%3Asid/infoweb.newsbank.com&svc_dat=AWNB&req_dat=0F1B56E1B179D300&rft_val_format=info%3Aofi/fmt%3Akev%3Amtx%3Actx&rft_dat=document_id%3Anews%252F11B7A8B696793450 |via=[[NewsBank]]}}</ref> }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Möbius strip
(section)
Add topic