Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lp space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Atomic decomposition=== If <math>1 \leq p < \infty</math> then every non-negative <math>f \in L^p(\mu)</math> has an {{em|atomic decomposition}},{{sfn|Bahouri|Chemin|Danchin|2011|pp=7β8}} meaning that there exist a sequence <math>(r_n)_{n \in \Z}</math> of non-negative real numbers and a sequence of non-negative functions <math>(f_n)_{n \in \Z},</math> called {{em|the atoms}}, whose supports <math>\left(\operatorname{supp} f_n\right)_{n \in \Z}</math> are [[Disjoint sets|pairwise disjoint sets]] of measure <math>\mu\left(\operatorname{supp} f_n\right) \leq 2^{n+1},</math> such that <math display=block>f ~=~ \sum_{n \in \Z} r_n \, f_n \, ,</math> and for every integer <math>n \in \Z,</math> <math display=block>\|f_n\|_\infty ~\leq~ 2^{-\tfrac{n}{p}} \, ,</math> and <math display=block>\tfrac{1}{2} \|f\|_p^p ~\leq~ \sum_{n \in \Z} r_n^p ~\leq~ 2 \|f\|^p_p \, ,</math> and where moreover, the sequence of functions <math>(r_n f_n)_{n \in\Z}</math> depends only on <math>f</math> (it is independent of <math>p</math>).{{sfn|Bahouri|Chemin|Danchin|2011|pp=7β8}} These inequalities guarantee that <math>\|f_n\|_p^p \leq 2</math> for all integers <math>n</math> while the supports of <math>(f_n)_{n \in \Z}</math> being pairwise disjoint implies{{sfn|Bahouri|Chemin|Danchin|2011|pp=7β8}} <math display=block>\|f\|_p^p ~=~ \sum_{n \in \Z} r_n^p \, \|f_n\|^p_p \, .</math> An atomic decomposition can be explicitly given by first defining for every integer <math>n \in \Z,</math>{{sfn|Bahouri|Chemin|Danchin|2011|pp=7β8}}<ref group=note>This [[infimum]] is attained by <math>t_n;</math> that is, <math>\mu(f > t_n) < 2^n</math> holds.</ref> <math display=block>t_n = \inf \{t \in \Reals : \mu(f > t) < 2^n\}</math> and then letting <math display=block>r_n ~=~ 2^{n/p} \, t_n ~ \text{ and } \quad f_n ~=~ \frac{f}{r_n} \, \mathbf{1}_{( t_{n+1} < f \leq t_n )}</math> where <math>\mu(f > t) = \mu(\{s : f(s) > t\})</math> denotes the measure of the set <math>(f > t) := \{s \in S : f(s) > t\}</math> and <math>\mathbf{1}_{(t_{n+1} < f \leq t_n)}</math> denotes the [[indicator function]] of the set <math>(t_{n+1} < f \leq t_n) := \{s \in S : t_{n+1} < f(s) \leq t_n\}.</math> The sequence <math>(t_n)_{n \in \Z}</math> is decreasing and converges to <math>0</math> as <math>n \to \infty.</math>{{sfn|Bahouri|Chemin|Danchin|2011|pp=7β8}} Consequently, if <math>t_n = 0</math> then <math>t_{n+1} = 0</math> and <math>(t_{n+1} < f \leq t_n) = \varnothing</math> so that <math>f_n = \frac{1}{r_n} \, f \,\mathbf{1}_{(t_{n+1} < f \leq t_n)}</math> is identically equal to <math>0</math> (in particular, the division <math>\tfrac{1}{r_n}</math> by <math>r_n = 0</math> causes no issues). The [[complementary cumulative distribution function]] <math>t \in \Reals \mapsto \mu(|f| > t)</math> of <math>|f| = f</math> that was used to define the <math>t_n</math> also appears in the definition of the weak <math>L^p</math>-norm (given below) and can be used to express the <math>p</math>-norm <math>\|\cdot\|_p</math> (for <math>1 \leq p < \infty</math>) of <math>f \in L^p(S, \mu)</math> as the integral{{sfn|Bahouri|Chemin|Danchin|2011|pp=7β8}} <math display=block>\|f\|_p^p ~=~ p \, \int_0^\infty t^{p-1} \mu(|f| > t) \, \mathrm{d} t \, ,</math> where the integration is with respect to the usual Lebesgue measure on <math>(0, \infty).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lp space
(section)
Add topic