Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lorentz force
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Lorentz force and analytical mechanics == {{see also|Magnetic vector potential#Interpretation as Potential Momentum}} The [[Lagrangian_mechanics#Electromagnetism|Lagrangian]] for a charged particle of mass {{math|''m''}} and charge {{math|''q''}} in an electromagnetic field equivalently describes the dynamics of the particle in terms of its ''energy'', rather than the force exerted on it. The classical expression is given by:<ref name="Kibble">{{cite book | last=Kibble | first=T. W. B. | last2=Berkshire | first2=Frank H. | title=Classical Mechanics | publisher=World Scientific Publishing Company | publication-place=London : River Edge, NJ | date=2004 | isbn=1-86094-424-8 | oclc=54415965 | chapter=10.5 Charged Particle in an Electromagnetic Field}}</ref> <math display="block">L = \frac{m}{2} \mathbf{\dot{r} }\cdot\mathbf{\dot{r} } + q \mathbf{A}\cdot\mathbf{\dot{r} }-q\phi</math> where {{math|'''A'''}} and {{math|''Ο''}} are the potential fields as above. The quantity <math>V = q(\phi - \mathbf{A}\cdot \mathbf{\dot{r}})</math> can be identified as a generalized, velocity-dependent potential energy and, accordingly, <math>\mathbf{F}</math> as a [[Conservative_force#Non-conservative_force|non-conservative force]].<ref>{{cite journal | last=Semon | first=Mark D. | last2=Taylor | first2=John R. | title=Thoughts on the magnetic vector potential | journal=American Journal of Physics | volume=64 | issue=11 | date=1996 | issn=0002-9505 | doi=10.1119/1.18400 | pages=1361β1369}}</ref> Using the Lagrangian, the equation for the Lorentz force given above can be obtained again. {{math proof|title=Derivation of Lorentz force from classical Lagrangian (SI units)| proof = For an {{math|1='''A'''}} field, a particle moving with velocity {{math|1='''v''' = '''αΉ'''}} has [[Momentum#In_electromagnetics|potential momentum]] <math>q\mathbf{A}(\mathbf{r}, t)</math>, so its potential energy is <math>q\mathbf{A}(\mathbf{r},t)\cdot\mathbf{\dot{r}}</math>. For a ''Ο'' field, the particle's potential energy is <math>q\phi(\mathbf{r},t)</math>. The total [[potential energy]] is then: <math display="block">V = q\phi - q\mathbf{A}\cdot\mathbf{\dot{r}}</math> and the [[kinetic energy]] is: <math display="block">T = \frac{m}{2} \mathbf{\dot{r}}\cdot\mathbf{\dot{r}}</math> hence the Lagrangian: <math display="block">\begin{align} L &= T - V \\[1ex] &= \frac{m}{2} \mathbf{\dot{r} } \cdot \mathbf{\dot{r} } + q \mathbf{A} \cdot \mathbf{\dot{r} } - q\phi \\[1ex] &= \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right) + q \left(\dot{x} A_x + \dot{y} A_y + \dot{z} A_z\right) - q\phi \end{align}</math> Lagrange's equations are <math display="block">\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}} = \frac{\partial L}{\partial x}</math> (same for {{math|''y''}} and {{math|''z''}}). So calculating the partial derivatives: <math display="block">\begin{align} \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{x} } &= m\ddot{x} + q\frac{\mathrm{d} A_x}{\mathrm{d}t} \\ & = m\ddot{x} + q \left[\frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\frac{dx}{dt} + \frac{\partial A_x}{\partial y}\frac{dy}{dt} + \frac{\partial A_x}{\partial z}\frac{dz}{dt}\right] \\[1ex] & = m\ddot{x} + q\left[\frac{\partial A_x}{\partial t} + \frac{\partial A_x}{\partial x}\dot{x} + \frac{\partial A_x}{\partial y}\dot{y} + \frac{\partial A_x}{\partial z}\dot{z}\right]\\ \end{align}</math> <math display="block">\frac{\partial L}{\partial x}= -q\frac{\partial \phi}{\partial x}+ q\left(\frac{\partial A_x}{\partial x}\dot{x}+\frac{\partial A_y}{\partial x}\dot{y}+\frac{\partial A_z}{\partial x}\dot{z}\right)</math> equating and simplifying: <math display="block">m\ddot{x}+ q\left(\frac{\partial A_x}{\partial t}+\frac{\partial A_x}{\partial x}\dot{x}+\frac{\partial A_x}{\partial y}\dot{y}+\frac{\partial A_x}{\partial z}\dot{z}\right)= -q\frac{\partial \phi}{\partial x}+ q\left(\frac{\partial A_x}{\partial x}\dot{x}+\frac{\partial A_y}{\partial x}\dot{y}+\frac{\partial A_z}{\partial x}\dot{z}\right)</math> <math display="block">\begin{align} F_x & = -q\left(\frac{\partial \phi}{\partial x}+\frac{\partial A_x}{\partial t}\right) + q\left[\dot{y}\left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)+\dot{z}\left(\frac{\partial A_z}{\partial x}-\frac{\partial A_x}{\partial z}\right)\right] \\[1ex] & = qE_x + q[\dot{y}(\nabla\times\mathbf{A})_z-\dot{z}(\nabla\times\mathbf{A})_y] \\[1ex] & = qE_x + q[\mathbf{\dot{r}}\times(\nabla\times\mathbf{A})]_x \\[1ex] & = qE_x + q(\mathbf{\dot{r}}\times\mathbf{B})_x \end{align}</math> and similarly for the {{math|''y''}} and {{math|''z''}} directions. Hence the force equation is: <math display="block">\mathbf{F}= q(\mathbf{E} + \mathbf{\dot{r}}\times\mathbf{B})</math> }} The relativistic Lagrangian is <math display="block">L = -mc^2\sqrt{1-\left(\frac{\dot{\mathbf{r} } }{c}\right)^2} + q \mathbf{A}(\mathbf{r}) \cdot \dot{\mathbf{r} } - q \phi(\mathbf{r}) </math> The action is the relativistic [[arclength]] of the path of the particle in [[spacetime]], minus the potential energy contribution, plus an extra contribution which [[Quantum Mechanics|quantum mechanically]] is an extra [[phase (waves)|phase]] a charged particle gets when it is moving along a vector potential. {{math proof |title=Derivation of Lorentz force from relativistic Lagrangian (SI units) |proof= The equations of motion derived by [[calculus of variations|extremizing]] the action (see [[matrix calculus]] for the notation): <math display="block"> \frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} =\frac{\partial L}{\partial \mathbf{r}} = q {\partial \mathbf{A} \over \partial \mathbf{r}}\cdot \dot{\mathbf{r}} - q {\partial \phi \over \partial \mathbf{r} }</math> <math display="block">\mathbf{P} -q\mathbf{A} = \frac{m\dot{\mathbf{r}}}{\sqrt{1-\left(\frac{\dot{\mathbf{r}}}{c}\right)^2}}</math> are the same as [[Hamiltonian mechanics|Hamilton's equations of motion]]: <math display="block"> \frac{\mathrm{d}\mathbf{r} }{\mathrm{d}t} = \frac{\partial}{\partial \mathbf{p} } \left ( \sqrt{(\mathbf{P}-q\mathbf{A})^2 + (mc^2)^2} + q\phi \right ) </math> <math display="block"> \frac{\mathrm{d}\mathbf{p} }{\mathrm{d}t} = -\frac{\partial}{\partial \mathbf{r}} \left ( \sqrt{(\mathbf{P}-q\mathbf{A})^2 + (mc^2)^2} + q\phi \right ) </math> both are equivalent to the noncanonical form: <math display="block"> \frac{\mathrm{d} }{\mathrm{d}t} {m\dot{\mathbf{r} } \over \sqrt{1-\left(\frac{\dot{\mathbf{r} } }{c}\right)^2} } = q\left ( \mathbf{E} + \dot\mathbf{r} \times \mathbf{B} \right ) . </math> This formula is the Lorentz force, representing the rate at which the EM field adds relativistic momentum to the particle. }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lorentz force
(section)
Add topic