Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lambert W function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Other formulas == === Definite integrals === There are several useful definite integral formulas involving the principal branch of the {{mvar|W}} function, including the following: : <math>\begin{align} & \int_0^\pi W_0\left( 2\cot^2x \right)\sec^2 x\,dx = 4\sqrt{\pi}, \\[5pt] & \int_0^\infty \frac{W_0(x)}{x\sqrt{x}}\,dx = 2\sqrt{2\pi}, \\[5pt] & \int_0^\infty W_0\left(\frac{1}{x^2}\right)\,dx = \sqrt{2\pi}, \text{ and more generally}\\[5pt] & \int_0^\infty W_0\left(\frac{1}{x^N}\right)\,dx = N^{1-\frac1N} \Gamma\left(1-\frac1N\right)\qquad \text{for }N > 0 \end{align}</math> where <math>\Gamma</math> denotes the [[gamma function]]. The first identity can be found by writing the [[Gaussian integral]] in [[polar coordinates]]. The second identity can be derived by making the substitution {{math|1=''u'' = ''W''<sub>0</sub>(''x'')}}, which gives : <math>\begin{align} x & =ue^u, \\[5pt] \frac{dx}{du} & =(u+1)e^u. \end{align}</math> Thus : <math>\begin{align} \int_0^\infty \frac{W_0(x)}{x\sqrt{x}}\,dx &=\int_0^\infty \frac{u}{ue^{u}\sqrt{ue^{u}}}(u+1)e^u \, du \\[5pt] &=\int_0^\infty \frac{u+1}{\sqrt{ue^u}}du \\[5pt] &=\int_0^\infty \frac{u+1}{\sqrt{u}}\frac{1}{\sqrt{e^u}}du\\[5pt] &=\int_0^\infty u^\tfrac12 e^{-\frac{u}{2}}du+\int_0^\infty u^{-\tfrac12} e^{-\frac{u}{2}}du\\[5pt] &=2\int_0^\infty (2w)^\tfrac12 e^{-w} \, dw+2\int_0^\infty (2w)^{-\tfrac12} e^{-w} \, dw && \quad (u =2w) \\[5pt] &=2\sqrt{2}\int_0^\infty w^\tfrac12 e^{-w} \, dw + \sqrt{2} \int_0^\infty w^{-\tfrac12} e^{-w} \, dw \\[5pt] &=2\sqrt{2} \cdot \Gamma \left (\tfrac32 \right )+\sqrt{2} \cdot \Gamma \left (\tfrac12 \right ) \\[5pt] &=2\sqrt{2} \left (\tfrac12\sqrt{\pi} \right )+\sqrt{2}\left(\sqrt{\pi}\right) \\[5pt] &=2\sqrt{2\pi}. \end{align}</math> The third identity may be derived from the second by making the substitution {{math|1=''u'' = ''x''<sup>β2</sup>}} and the first can also be derived from the third by the substitution {{math|1=''z'' = {{sfrac|1|{{sqrt|2}}}} tan ''x''}}. Deriving its generalization, the fourth identity, is only slightly more involved and can be done by substituting, in turn, <math>u = x^{\frac1N}</math>, <math>t = W_0(u)</math>, and <math>z = \frac tN</math>, observing that one obtains two integrals matching the definition of the gamma function, and finally using the properties of the gamma function to collect terms and simplify. Except for {{mvar|z}} along the branch cut {{open-closed|ββ, β{{sfrac|1|''e''}}}} (where the integral does not converge), the principal branch of the Lambert {{mvar|W}} function can be computed by the following integral:<ref>{{cite web|title=The Lambert ''W'' Function|url=http://www.orcca.on.ca/LambertW/|publisher=Ontario Research Centre for Computer Algebra}}</ref> : <math>\begin{align} W_0(z)&=\frac{z}{2\pi}\int_{-\pi}^\pi\frac{\left(1-\nu\cot\nu\right)^2+\nu^2}{z+\nu\csc\left(\nu\right) e^{-\nu\cot\nu}} \, d\nu \\[5pt] &= \frac{z}{\pi} \int_0^\pi \frac{\left(1-\nu\cot\nu\right)^2+\nu^2}{z + \nu \csc\left(\nu\right) e^{-\nu\cot\nu}} \, d\nu, \end{align}</math> where the two integral expressions are equivalent due to the symmetry of the integrand. === Indefinite integrals === <math display="block">\int \frac{ W(x) }{x} \, dx \; = \; \frac{ W(x)^2}{2} + W(x) + C </math> {{math proof|title=1st proof|proof= Introduce substitution variable <math> u= W(x) \rightarrow ue^u=x \;\;\;\; \frac{ d }{ du } ue^u = (u+1)e^u </math> : <math>\int \frac{ W(x) }{x} \, dx \; = \; \int \frac{u}{ue^u}(u+1)e^u \, du </math> : <math>\int \frac{ W(x) }{x} \, dx \; = \; \int \frac{ \cancel{\color{OliveGreen}{u}} }{ \cancel{\color{OliveGreen}{u}} \cancel{\color{BrickRed}{e^u}} }\left(u+1\right)\cancel{\color{BrickRed}{e^u}} \, du </math> : <math>\int \frac{ W(x) }{x} \, dx \; = \; \int (u+1) \, du </math> : <math>\int \frac{ W(x) }{x} \, dx \; = \; \frac{u^2}{2} + u + C </math> :: <math> u= W(x) </math> : <math>\int \frac{ W(x) }{x} \, dx \; = \; \frac{ W(x) ^2}{2} + W(x) + C </math> }} {{math proof|title=2nd proof|proof= <math> W(x) e^{ W(x) } = x \rightarrow \frac{ W(x) }{ x } = e^{ - W(x) } </math> <math>\int \frac{ W(x) }{x} \, dx \; = \; \int e^{ - W(x) } \, dx </math> :: <math> u= W(x) \rightarrow ue^u=x \;\;\;\; \frac{ d }{ \, du } ue^u = \left(u+1\right)e^u </math> <math>\int \frac{ W(x) }{x} \, dx \; = \; \int e^{-u} (u+1) e^u \, du </math> <math>\int \frac{ W(x) }{x} \, dx \; = \; \int \cancel{\color{OliveGreen}{e^{ -u } }} \left( u+1 \right) \cancel{\color{OliveGreen}{ e^u }} \, du </math> <math>\int \frac{ W(x) }{x} \, dx \; = \; \int (u+1) \, du </math> <math>\int \frac{ W(x) }{x} \, dx \; = \; \frac{u^2}{2} + u + C </math> :: <math> u= W(x) </math> <math>\int \frac{ W(x) }{x} \, dx \; = \; \frac{ W(x) ^2}{2} + W(x) + C </math> }} <math display="block">\int W\left(A e^{Bx}\right) \, dx \; = \; \frac{ W\left(A e^{Bx}\right) ^2}{2B} + \frac{ W\left(A e^{Bx}\right) }{B} + C </math> {{math proof|proof= <math>\int W\left(A e^{Bx}\right) \, dx \; = \; \int W\left(A e^{Bx}\right) \, dx </math> :: <math> u = Bx \rightarrow \frac{u}{B} = x \;\;\;\; \frac{ d }{ du } \frac{u}{B} = \frac{1}{B} </math> <math>\int W\left(A e^{Bx}\right) \, dx \; = \; \int W\left(A e^{u}\right) \frac{1}{B} du </math> :: <math> v = e^u \rightarrow \ln\left(v\right) = u \;\;\;\; \frac{ d }{ dv } \ln\left(v\right) = \frac{1}{v} </math> <math>\int W\left(A e^{Bx}\right) \, dx \; = \; \frac{1}{B} \int \frac{W\left(A v\right)}{v} dv </math> :: <math> w = Av \rightarrow \frac{w}{A} = v \;\;\;\; \frac{ d }{ dw } \frac{w}{A} = \frac{1}{A} </math> <math>\int W\left(A e^{Bx}\right) \, dx \; = \; \frac{1}{B} \int \frac{\cancel{\color{OliveGreen}{A}} W(w)}{w} \cancel{\color{OliveGreen}{ \frac{1}{A} }} dw </math> :: <math> t = W\left(w\right) \rightarrow te^t=w \;\;\;\; \frac{ d }{ dt } te^t = \left(t+1\right)e^t </math> <math>\int W\left(A e^{Bx}\right) \, dx \; = \; \frac{1}{B} \int \frac{t}{te^t}\left(t+1\right)e^t dt </math> <math>\int W\left(A e^{Bx}\right) \, dx \; = \; \frac{1}{B} \int \frac{ \cancel{\color{OliveGreen}{t}} }{ \cancel{\color{OliveGreen}{t}} \cancel{\color{BrickRed}{e^t}} }\left(t+1\right) \cancel{\color{BrickRed}{e^t}} dt </math> <math>\int W\left(A e^{Bx}\right) \, dx \; = \; \frac{1}{B} \int (t+1) dt </math> <math> \int W\left(A e^{Bx}\right) \, dx \; = \; \frac{t^2}{2B} + \frac{t}{B} + C </math> :: <math> t = W\left(w\right) </math> <math> \int W\left(A e^{Bx}\right) \, dx \; = \; \frac{ W\left(w\right) ^2}{2B} + \frac{ W\left(w\right) }{B} + C </math> :: <math> w = Av </math> <math> \int W\left(A e^{Bx}\right) \, dx \; = \; \frac{ W\left(Av\right) ^2}{2B} + \frac{ W\left(Av\right) }{B} + C </math> :: <math> v = e^u </math> <math> \int W\left(A e^{Bx}\right) \, dx \; = \; \frac{ W\left(Ae^u\right) ^2}{2B} + \frac{ W\left(Ae^u\right) }{B} + C </math> :: <math> u = Bx </math> <math> \int W\left(A e^{Bx}\right) \, dx \; = \; \frac{ W\left(Ae^{Bx}\right) ^2}{2B} + \frac{ W\left(Ae^{Bx}\right) }{B} + C </math> }} <math display="block"> \int \frac{ W(x) }{x^2} \, dx \; = \; \operatorname{Ei}\left(- W(x) \right) - e^{ - W(x) } + C </math> {{math proof|proof= Introduce substitution variable <math> u = W(x)</math>, which gives us <math> ue^u = x </math> and <math>\frac{ d }{ du } ue^u = \left(u+1\right)e^u </math> <math>\begin{align} \int \frac{ W(x) }{x^2} \, dx \; & = \; \int \frac{ u }{ \left(ue^u\right)^2 } \left(u+1\right)e^u du \\ & = \; \int \frac{ u+1 }{ ue^u } du \\ & = \; \int \frac{ u }{ ue^u } du \; + \; \int \frac{ 1 }{ ue^u } du \\ & = \; \int e^{-u} du \; + \; \int \frac{ e^{-u} }{ u } du \end{align}</math> :: <math> v = -u \rightarrow -v = u \;\;\;\; \frac{ d }{ dv } -v = -1 </math> <math> \int \frac{ W(x) }{x^2} \, dx \; = \; \int e^{v} \left(-1\right) dv \; + \; \int \frac{ e^{-u} }{ u } du </math> <math> \int \frac{ W(x) }{x^2} \, dx \; = \; - e^v + \operatorname{Ei}\left(-u\right) + C </math> :: <math> v = -u </math> <math> \int \frac{ W(x) }{x^2} \, dx \; = \; - e^{-u} + \operatorname{Ei}\left(-u\right) + C </math> :: <math> u = W(x) </math> <math>\begin{align} \int \frac{ W(x) }{x^2} \, dx \; &= \; - e^{- W(x) } + \operatorname{Ei}\left(- W(x) \right) + C \\ &= \; \operatorname{Ei}\left(- W(x) \right) - e^{- W(x) } + C \end{align}</math> }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lambert W function
(section)
Add topic