Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gamma function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Integral representations === There are many formulas, besides the Euler integral of the second kind, that express the gamma function as an integral. For instance, when the real part of {{mvar|z}} is positive,<ref>{{Cite book |last1=Gradshteyn |first1=I. S.|last2=Ryzhik |first2=I. M. |title=Table of Integrals, Series, and Products |edition=Seventh |publisher=Academic Press |year=2007 |isbn=978-0-12-373637-6|page=893}}</ref> <math display="block">\Gamma (z)=\int_{-\infty}^\infty e^{zt-e^t}\, dt</math> and<ref>Whittaker and Watson, 12.2 example 1.</ref> <math display="block">\Gamma(z) = \int_0^1 \left(\log \frac{1}{t}\right)^{z-1}\,dt,</math> <math display="block">\Gamma(z) = 2c^z\int_{0}^{\infty}t^{2z-1}e^{-ct^{2}}\,dt \,,\; c>0</math> where the three integrals respectively follow from the substitutions <math>t=e^{-x}</math>, <math>t=-\log x</math> <ref>{{Cite journal |last=Detlef |first=Gronau |title=Why is the gamma function so as it is? |url=https://imsc.uni-graz.at/gronau/TMCS_1_2003.pdf |journal=Imsc.uni-graz.at}}</ref> and <math>t=cx^2</math><ref>{{cite journal |last1=Pascal Sebah |first1=Xavier Gourdon |title=Introduction to the Gamma Function |journal=Numbers Computation |url=https://www.csie.ntu.edu.tw/~b89089/link/gammaFunction.pdf |access-date=30 January 2023 |archive-date=30 January 2023 |archive-url=https://web.archive.org/web/20230130155521/https://www.csie.ntu.edu.tw/~b89089/link/gammaFunction.pdf |url-status=dead }}</ref> in Euler's second integral. The last integral in particular makes clear the connection between the gamma function at half integer arguments and the [[Gaussian integral]]: if <math>z=1/2,\; c=1</math> we get <math display="block"> \Gamma(1/2)=2\int_{0}^{\infty}e^{-t^{2}}\,dt=\sqrt{\pi} \;. </math> Binet's first integral formula for the gamma function states that, when the real part of {{mvar|z}} is positive, then:<ref>Whittaker and Watson, 12.31.</ref> <math display="block">\operatorname{log\Gamma}(z) = \left(z - \frac{1}{2}\right)\log z - z + \frac{1}{2}\log (2\pi) + \int_0^\infty \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1}\right)\frac{e^{-tz}}{t}\,dt.</math> The integral on the right-hand side may be interpreted as a [[Laplace transform]]. That is, <math display="block">\log\left(\Gamma(z)\left(\frac{e}{z}\right)^z\sqrt{\frac{z}{2\pi}}\right) = \mathcal{L}\left(\frac{1}{2t} - \frac{1}{t^2} + \frac{1}{t(e^t - 1)}\right)(z).</math> Binet's second integral formula states that, again when the real part of {{mvar|z}} is positive, then:<ref>Whittaker and Watson, 12.32.</ref> <math display="block">\operatorname{log\Gamma}(z) = \left(z - \frac{1}{2}\right)\log z - z + \frac{1}{2}\log(2\pi) + 2\int_0^\infty \frac{\arctan(t/z)}{e^{2\pi t} - 1}\,dt.</math> Let {{math|''C''}} be a [[Hankel contour]], meaning a path that begins and ends at the point {{math|β}} on the [[Riemann sphere]], whose unit tangent vector converges to {{math|β1}} at the start of the path and to {{math|1}} at the end, which has [[winding number]] 1 around {{math|0}}, and which does not cross {{closed-open|0, β}}. Fix a branch of <math>\log(-t)</math> by taking a branch cut along {{closed-open|0, β}} and by taking <math>\log(-t)</math> to be real when {{math|t}} is on the negative real axis. Assume {{mvar|z}} is not an integer. Then Hankel's formula for the gamma function is:<ref>Whittaker and Watson, 12.22.</ref> <math display="block">\Gamma(z) = -\frac{1}{2i\sin \pi z}\int_C (-t)^{z-1}e^{-t}\,dt,</math> where <math>(-t)^{z-1}</math> is interpreted as <math>\exp((z-1)\log(-t))</math>. The reflection formula leads to the closely related expression <math display="block">\frac{1}{\Gamma(z)} = \frac{i}{2\pi}\int_C (-t)^{-z}e^{-t}\,dt,</math> again valid whenever {{math|''z''}} is not an integer.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gamma function
(section)
Add topic