Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fuzzy set
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Entropy== A measure ''d'' of fuzziness for fuzzy sets of universe <math>U</math> should fulfill the following conditions for all <math>x \in U</math>: #<math>d(A) = 0</math> if <math>A</math> is a crisp set: <math>\mu_A(x) \in \{0,\,1\}</math> #<math>d(A)</math> has a unique maximum iff <math>\forall x \in U: \mu_A(x) = 0.5</math> #<math>\forall x \in U:(\mu_A(x) \leq \mu_B(x) \leq 0.5) \or (\mu_A(x) \geq \mu_B(x) \geq 0.5)</math> ::<math>\Rightarrow d(A) \leq d(B)</math>, ::which means that ''B'' is "crisper" than ''A''. #<math>d(\neg{A}) = d(A)</math> In this case <math>d(A)</math> is called the '''entropy''' of the fuzzy set ''A''. For '''finite''' <math>U = \{x_1, x_2, ... x_n\}</math> the entropy of a fuzzy set <math>A</math> is given by :<math>d(A) = H(A) + H(\neg{A})</math>, ::<math>H(A) = -k \sum_{i=1}^n \mu_A(x_i) \ln \mu_A(x_i)</math> or just :<math>d(A) = -k \sum_{i=1}^n S(\mu_A(x_i))</math> where <math>S(x) = H_e(x)</math> is [[Binary entropy function|Shannon's function]] (natural entropy function) :<math>S(\alpha) = -\alpha \ln \alpha - (1-\alpha) \ln (1-\alpha),\ \alpha \in [0,1]</math> and <math>k</math> is a constant depending on the measure unit and the logarithm base used (here we have used the natural base [[e (mathematical constant)|e]]). The physical interpretation of ''k'' is the [[Boltzmann constant]] ''k''<sup>''B''</sup>. Let <math>A</math> be a fuzzy set with a '''continuous''' membership function (fuzzy variable). Then :<math>H(A) = -k \int_{- \infty}^\infty \operatorname{Cr} \lbrace A \geq t \rbrace \ln \operatorname{Cr} \lbrace A \geq t \rbrace \,dt</math> and its entropy is :<math>d(A) = -k \int_{- \infty}^\infty S(\operatorname{Cr} \lbrace A \geq t \rbrace )\,dt.</math><ref>{{cite journal|doi=10.1016/0165-0114(92)90239-Z|title=Entropy, distance measure and similarity measure of fuzzy sets and their relations|journal=Fuzzy Sets and Systems|volume=52|issue=3|pages=305β318|year=1992|last1=Xuecheng|first1=Liu}}</ref><ref>{{cite journal|doi=10.1186/s40467-015-0029-5|title=Fuzzy cross-entropy|journal=Journal of Uncertainty Analysis and Applications|volume=3|year=2015|last1=Li|first1=Xiang|doi-access=free}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fuzzy set
(section)
Add topic