Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's formula
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Relationship to trigonometry ==== [[File:Sine Cosine Exponential qtl1.svg|thumb|Relationship between sine, cosine and exponential function]] Euler's formula, the definitions of the trigonometric functions and the standard identities for exponentials are sufficient to easily derive most trigonometric identities. It provides a powerful connection between [[mathematical analysis|analysis]] and [[trigonometry]], and provides an interpretation of the sine and cosine functions as [[weighted sum]]s of the exponential function: <math display="block">\begin{align} \cos x &= \operatorname{Re} \left(e^{ix}\right) =\frac{e^{ix} + e^{-ix}}{2}, \\ \sin x &= \operatorname{Im} \left(e^{ix}\right) =\frac{e^{ix} - e^{-ix}}{2i}. \end{align}</math> The two equations above can be derived by adding or subtracting Euler's formulas: <math display="block">\begin{align} e^{ix} &= \cos x + i \sin x, \\ e^{-ix} &= \cos(- x) + i \sin(- x) = \cos x - i \sin x \end{align}</math> and solving for either cosine or sine. These formulas can even serve as the definition of the trigonometric functions for complex arguments {{mvar|x}}. For example, letting {{math|1=''x'' = ''iy''}}, we have: <math display="block">\begin{align} \cos iy &= \frac{e^{-y} + e^y}{2} = \cosh y, \\ \sin iy &= \frac{e^{-y} - e^y}{2i} = \frac{e^y - e^{-y}}{2}i = i\sinh y. \end{align}</math> In addition <math display="block">\begin{align} \cosh ix &= \frac{e^{ix} + e^{-ix}}{2} = \cos x, \\ \sinh ix &= \frac{e^{ix} - e^{-ix}}{2} = i\sin x. \end{align}</math> Complex exponentials can simplify trigonometry, because they are mathematically easier to manipulate than their sine and cosine components. One technique is simply to convert sines and cosines into equivalent expressions in terms of exponentials sometimes called ''complex sinusoids''.<ref>{{Cite web |title=Complex Sinusoids |url=https://ccrma.stanford.edu/~jos/filters06/Complex_Sinusoids.html |access-date=2024-09-10 |website=ccrma.stanford.edu}}</ref> After the manipulations, the simplified result is still real-valued. For example: <math display="block">\begin{align} \cos x \cos y &= \frac{e^{ix}+e^{-ix}}{2} \cdot \frac{e^{iy}+e^{-iy}}{2} \\ &= \frac 1 2 \cdot \frac{e^{i(x+y)}+e^{i(x-y)}+e^{i(-x+y)}+e^{i(-x-y)}}{2} \\ &= \frac 1 2 \bigg( \frac{e^{i(x+y)} + e^{-i(x+y)}}{2} + \frac{e^{i(x-y)} + e^{-i(x-y)}}{2} \bigg)\\ &= \frac 1 2 \left( \cos(x+y) + \cos(x-y) \right). \end{align} </math> Another technique is to represent sines and cosines in terms of the [[real part]] of a complex expression and perform the manipulations on the complex expression. For example: <math display="block">\begin{align} \cos nx &= \operatorname{Re} \left(e^{inx}\right) \\ &= \operatorname{Re} \left( e^{i(n-1)x}\cdot e^{ix} \right) \\ &= \operatorname{Re} \Big( e^{i(n-1)x}\cdot \big(\underbrace{e^{ix} + e^{-ix}}_{2\cos x } - e^{-ix}\big) \Big) \\ &= \operatorname{Re} \left( e^{i(n-1)x}\cdot 2\cos x - e^{i(n-2)x} \right) \\ &= \cos[(n-1)x] \cdot [2 \cos x] - \cos[(n-2)x]. \end{align}</math> This formula is used for recursive generation of {{math|cos ''nx''}} for integer values of {{mvar|n}} and arbitrary {{mvar|x}} (in radians). Considering {{math|cos ''x''}} a parameter in equation above yields recursive formula for [[Chebyshev polynomials]] of the first kind. {{see also|Phasor#Arithmetic}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's formula
(section)
Add topic