Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Series expansions === In general, <math display="block"> \gamma = \lim_{n \to \infty}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3} + \ldots + \frac{1}{n} - \log(n+\alpha) \right) \equiv \lim_{n \to \infty} \gamma_n(\alpha) </math> for any {{math|{{var|α}} > −{{var|n}}}}. However, the rate of convergence of this expansion depends significantly on {{mvar|α}}. In particular, {{math|{{var|γ}}{{sub|{{var|n}}}}(1/2)}} exhibits much more rapid convergence than the conventional expansion {{math|{{var|γ}}{{sub|{{var|n}}}}(0)}}.{{r|DeTemple1993}}{{sfn|Havil|2003|pp=75–8}} This is because <math display="block"> \frac{1}{2(n+1)} < \gamma_n(0) - \gamma < \frac{1}{2n}, </math> while <math display="block"> \frac{1}{24(n+1)^2} < \gamma_n(1/2) - \gamma < \frac{1}{24n^2}. </math> Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below. Euler showed that the following [[infinite series]] approaches {{mvar|γ}}: <math display="block">\gamma = \sum_{k=1}^\infty \left(\frac 1 k - \log\left(1+\frac 1 k \right)\right).</math> The series for {{mvar|γ}} is equivalent to a series [[Niels Nielsen (mathematician)|Nielsen]] found in 1897:{{r|Krämer2005}}{{sfn|Blagouchine|2016}} <math display="block">\gamma = 1 - \sum_{k=2}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor}{k+1}.</math> In 1910, [[Giovanni Vacca (mathematician)|Vacca]] found the closely related series{{r|Vacca1910|Glaisher1910|Hardy1912|Vacca1926|Kluyver1927|Krämer2005|Blagouchine2016}} <math display="block">\begin{align} \gamma & = \sum_{k=1}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor} k \\[5pt] & = \tfrac12-\tfrac13 + 2\left(\tfrac14 - \tfrac15 + \tfrac16 - \tfrac17\right) + 3\left(\tfrac18 - \tfrac19 + \tfrac1{10} - \tfrac1{11} + \cdots - \tfrac1{15}\right) + \cdots, \end{align}</math> where {{math|log{{sub|2}}}} is the [[binary logarithm|logarithm to base 2]] and {{math|{{floor| }}}} is the [[Floor and ceiling functions|floor function]]. This can be generalized to:<ref>{{Citation |last1=Pilehrood |first1=Khodabakhsh Hessami |title=Vacca-type series for values of the generalized-Euler-constant function and its derivative |date=2008-08-04 |last2=Pilehrood |first2=Tatiana Hessami|arxiv=0808.0410 }}</ref> <math display="block">\gamma= \sum_{k=1}^\infty \frac{\left\lfloor\log_B k\right\rfloor}{k} \varepsilon(k)</math>where:<math display="block">\varepsilon(k)= \begin{cases} B-1, &\text{if } B\mid n \\ -1, &\text{if }B\nmid n \end{cases}</math> In 1926 Vacca found a second series: <math display="block">\begin{align} \gamma + \zeta(2) & = \sum_{k=2}^\infty \left( \frac1{\left\lfloor\sqrt{k}\right\rfloor^2} - \frac1{k}\right) \\[5pt] & = \sum_{k=2}^\infty \frac{k - \left\lfloor\sqrt{k}\right\rfloor^2}{k \left\lfloor \sqrt{k} \right\rfloor^2} \\[5pt] &= \frac12 + \frac23 + \frac1{2^2}\sum_{k=1}^{2\cdot 2} \frac{k}{k+2^2} + \frac1{3^2}\sum_{k=1}^{3\cdot 2} \frac{k}{k+3^2} + \cdots \end{align}</math> From the [[Carl Johan Malmsten|Malmsten]]–[[Ernst Kummer|Kummer]] expansion for the logarithm of the gamma function<ref name=":1" /> we get: <math display="block">\gamma = \log\pi - 4\log\left(\Gamma(\tfrac34)\right) + \frac 4 \pi \sum_{k=1}^\infty (-1)^{k+1}\frac{\log(2k+1)}{2k+1}.</math> Ramanujan, in his [[Ramanujan's lost notebook|lost notebook]] gave a series that approaches {{mvar|γ}}{{r|Berndt2008}}: <math display="block">\gamma = \log 2 - \sum_{n=1}^{\infty} \sum_{k=\frac{3^{n-1}+1}{2}}^{\frac{3^{n}-1}{2}} \frac{2n}{(3k)^3-3k}</math> An important expansion for Euler's constant is due to [[Gregorio Fontana|Fontana]] and [[Lorenzo Mascheroni|Mascheroni]] <math display="block">\gamma = \sum_{n=1}^\infty \frac{|G_n|}{n} = \frac12 + \frac1{24} + \frac1{72} + \frac{19}{2880} + \frac3{800} + \cdots,</math> where {{math|{{var|G}}{{sub|{{var|n}}}}}} are [[Gregory coefficients]].{{r|Krämer2005|Blagouchine2016|Blagouchine2018}} This series is the special case {{math|1={{var|k}} = 1}} of the expansions <math display="block">\begin{align} \gamma &= H_{k-1} - \log k + \sum_{n=1}^{\infty}\frac{(n-1)!|G_n|}{k(k+1) \cdots (k+n-1)} && \\ &= H_{k-1} - \log k + \frac1{2k} + \frac1{12k(k+1)} + \frac1{12k(k+1)(k+2)} + \frac{19}{120k(k+1)(k+2)(k+3)} + \cdots && \end{align}</math> convergent for {{math|1={{var|k}} = 1, 2, ...}} A similar series with the Cauchy numbers of the second kind {{math|{{var|C}}{{sub|{{var|n}}}}}} is{{r|Blagouchine2016|Alabdulmohsin2018_1478}} <math display="block">\gamma = 1 - \sum_{n=1}^\infty \frac{C_{n}}{n \, (n+1)!} =1- \frac{1}{4} -\frac{5}{72} - \frac{1}{32} - \frac{251}{14400} - \frac{19}{1728} - \ldots</math> Blagouchine (2018) found an interesting generalisation of the Fontana–Mascheroni series <math display="block">\gamma=\sum_{n=1}^\infty\frac{(-1)^{n+1}}{2n}\Big\{\psi_{n}(a)+ \psi_{n}\Big(-\frac{a}{1+a}\Big)\Big\}, \quad a>-1</math> where {{math|{{var|ψ}}{{sub|{{var|n}}}}({{var|a}})}} are the [[Bernoulli polynomials of the second kind]], which are defined by the generating function <math display="block"> \frac{z(1+z)^s}{\log(1+z)}= \sum_{n=0}^\infty z^n \psi_n(s) ,\qquad |z|<1. </math> For any rational {{mvar|a}} this series contains rational terms only. For example, at {{math|1={{var|a}} = 1}}, it becomes{{r|OEIS_A302120|OEISA302121}} <math display="block">\gamma=\frac{3}{4} - \frac{11}{96} - \frac{1}{72} - \frac{311}{46080} - \frac{5}{1152} - \frac{7291}{2322432} - \frac{243}{100352} - \ldots</math> Other series with the same polynomials include these examples: <math display="block">\gamma= -\log(a+1) - \sum_{n=1}^\infty\frac{(-1)^n \psi_{n}(a)}{n},\qquad \Re(a)>-1 </math> and <math display="block">\gamma= -\frac{2}{1+2a} \left\{\log\Gamma(a+1) -\frac{1}{2}\log(2\pi) + \frac{1}{2} + \sum_{n=1}^\infty\frac{(-1)^n \psi_{n+1}(a)}{n}\right\},\qquad \Re(a)>-1 </math> where {{math|Γ({{var|a}})}} is the [[gamma function]].{{r|Blagouchine2018}} A series related to the Akiyama–Tanigawa algorithm is <math display="block">\gamma= \log(2\pi) - 2 - 2 \sum_{n=1}^\infty\frac{(-1)^n G_{n}(2)}{n}= \log(2\pi) - 2 + \frac{2}{3} + \frac{1}{24}+ \frac{7}{540} + \frac{17}{2880}+ \frac{41}{12600} + \ldots </math> where {{math|{{var|G}}{{sub|{{var|n}}}}(2)}} are the [[Gregory coefficients]] of the second order.{{r|Blagouchine2018}} As a series of [[prime number]]s: <math display="block">\gamma = \lim_{n\to\infty}\left(\log n - \sum_{p\le n}\frac{\log p}{p-1}\right).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's constant
(section)
Add topic