Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euclidean vector
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Addition and subtraction=== {{Further|Vector space}} The sum of '''a''' and '''b''' of two vectors may be defined as <math display=block>\mathbf{a}+\mathbf{b} =(a_1+b_1)\mathbf{e}_1 +(a_2+b_2)\mathbf{e}_2 +(a_3+b_3)\mathbf{e}_3.</math> The resulting vector is sometimes called the '''resultant vector''' of '''a''' and '''b'''. The addition may be represented graphically by placing the tail of the arrow '''b''' at the head of the arrow '''a''', and then drawing an arrow from the tail of '''a''' to the head of '''b'''. The new arrow drawn represents the vector '''a''' + '''b''', as illustrated below:<ref name=":2" /> [[Image:Vector addition.svg|class=skin-invert-image|250px|center|The addition of two vectors '''a''' and '''b''']] This addition method is sometimes called the ''parallelogram rule'' because '''a''' and '''b''' form the sides of a [[parallelogram]] and '''a''' + '''b''' is one of the diagonals. If '''a''' and '''b''' are bound vectors that have the same base point, this point will also be the base point of '''a''' + '''b'''. One can check geometrically that '''a''' + '''b''' = '''b''' + '''a''' and ('''a''' + '''b''') + '''c''' = '''a''' + ('''b''' + '''c'''). The difference of '''a''' and '''b''' is <math display=block>\mathbf{a}-\mathbf{b} =(a_1-b_1)\mathbf{e}_1 +(a_2-b_2)\mathbf{e}_2 +(a_3-b_3)\mathbf{e}_3.</math> Subtraction of two vectors can be geometrically illustrated as follows: to subtract '''b''' from '''a''', place the tails of '''a''' and '''b''' at the same point, and then draw an arrow from the head of '''b''' to the head of '''a'''. This new arrow represents the vector '''(-b)''' + '''a''', with '''(-b)''' being the opposite of '''b''', see drawing. And '''(-b)''' + '''a''' = '''a''' β '''b'''. [[Image:Vector subtraction.svg|class=skin-invert-image|125px|center|The subtraction of two vectors '''a''' and '''b''']]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euclidean vector
(section)
Add topic