Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Error function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related functions== ===Complementary error function=== The '''complementary error function''', denoted {{math|erfc}}, is defined as [[File:Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]] <math display="block">\begin{align} \operatorname{erfc} x & = 1-\operatorname{erf} x \\[5pt] & = \frac{2}{\sqrt\pi} \int_x^\infty e^{-t^2}\,\mathrm dt \\[5pt] & = e^{-x^2} \operatorname{erfcx} x, \end{align} </math> which also defines {{math|erfcx}}, the '''scaled complementary error function'''<ref name=Cody93>{{Citation |first=W. J. |last=Cody |title=Algorithm 715: SPECFUNβA portable FORTRAN package of special function routines and test drivers |url=http://www.stat.wisc.edu/courses/st771-newton/papers/p22-cody.pdf |journal=[[ACM Trans. Math. Softw.]] |volume=19 |issue=1 |pages=22β32 |date=March 1993 |doi=10.1145/151271.151273|citeseerx=10.1.1.643.4394 |s2cid=5621105 }}</ref> (which can be used instead of {{math|erfc}} to avoid [[arithmetic underflow]]<ref name=Cody93/><ref name=Zaghloul07>{{Citation |first=M. R. |last=Zaghloul |title=On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand | journal = [[Monthly Notices of the Royal Astronomical Society]] |volume=375 |issue=3 |pages=1043β1048 |date=1 March 2007 |doi=10.1111/j.1365-2966.2006.11377.x|bibcode=2007MNRAS.375.1043Z |doi-access=free }}</ref>). Another form of {{math|erfc ''x''}} for {{math|''x'' β₯ 0}} is known as Craig's formula, after its discoverer:<ref>John W. Craig, [http://wsl.stanford.edu/~ee359/craig.pdf ''A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations''] {{Webarchive|url=https://web.archive.org/web/20120403231129/http://wsl.stanford.edu/~ee359/craig.pdf |date=3 April 2012 }}, Proceedings of the 1991 IEEE Military Communication Conference, vol. 2, pp. 571β575.</ref> <math display="block">\operatorname{erfc} (x \mid x\ge 0) = \frac{2}{\pi} \int_0^\frac{\pi}{2} \exp \left( - \frac{x^2}{\sin^2 \theta} \right) \, \mathrm d\theta.</math> This expression is valid only for positive values of {{mvar|x}}, but it can be used in conjunction with {{math|erfc ''x'' {{=}} 2 β erfc(β''x'')}} to obtain {{math|erfc(''x'')}} for negative values. This form is advantageous in that the range of integration is fixed and finite. An extension of this expression for the {{math|erfc}} of the sum of two non-negative variables is as follows:<ref>{{cite journal |doi=10.1109/TCOMM.2020.2986209 |title=A Novel Extension to Craig's Q-Function Formula and Its Application in Dual-Branch EGC Performance Analysis|journal=IEEE Transactions on Communications |volume=68 |issue=7 |pages=4117β4125 |year=2020 |last1=Behnad |first1=Aydin |s2cid=216500014}}</ref> <math display="block">\operatorname{erfc} (x+y \mid x,y\ge 0) = \frac{2}{\pi} \int_0^\frac{\pi}{2} \exp \left( - \frac{x^2}{\sin^2 \theta} - \frac{y^2}{\cos^2 \theta} \right) \,\mathrm d\theta.</math> ===Imaginary error function=== The '''imaginary error function''', denoted {{math|erfi}}, is defined as [[File:Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]] <math display="block">\begin{align} \operatorname{erfi} x & = -i\operatorname{erf} ix \\[5pt] & = \frac{2}{\sqrt\pi} \int_0^x e^{t^2}\,\mathrm dt \\[5pt] & = \frac{2}{\sqrt\pi} e^{x^2} D(x), \end{align} </math> where {{math|''D''(''x'')}} is the [[Dawson function]] (which can be used instead of {{math|erfi}} to avoid [[arithmetic overflow]]<ref name=Cody93/>). Despite the name "imaginary error function", {{math|erfi ''x''}} is real when {{mvar|x}} is real. When the error function is evaluated for arbitrary [[complex number|complex]] arguments {{mvar|z}}, the resulting '''complex error function''' is usually discussed in scaled form as the [[Faddeeva function]]: <math display="block">w(z) = e^{-z^2}\operatorname{erfc}(-iz) = \operatorname{erfcx}(-iz).</math> ===Cumulative distribution function=== The error function is essentially identical to the standard [[normal cumulative distribution function]], denoted {{math|Ξ¦}}, also named {{math|norm(''x'')}} by some software languages{{Citation needed|date=July 2020}}, as they differ only by scaling and translation. Indeed, [[File:Normal cumulative distribution function complex plot in Mathematica 13.1 with ComplexPlot3D.svg|alt=the normal cumulative distribution function plotted in the complex plane|thumb|the normal cumulative distribution function plotted in the complex plane]] <math display="block">\begin{align} \Phi(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^\tfrac{-t^2}{2}\,\mathrm dt\\[6pt] &= \frac{1}{2} \left(1+\operatorname{erf}\frac{x}{\sqrt 2}\right)\\[6pt] &= \frac{1}{2} \operatorname{erfc}\left(-\frac{x}{\sqrt 2}\right) \end{align}</math> or rearranged for {{math|erf}} and {{math|erfc}}: <math display="block">\begin{align} \operatorname{erf}(x) &= 2 \Phi{\left ( x \sqrt{2} \right )} - 1 \\[6pt] \operatorname{erfc}(x) &= 2 \Phi{\left ( - x \sqrt{2} \right )} \\ &= 2\left(1 - \Phi{\left ( x \sqrt{2} \right)}\right). \end{align}</math> Consequently, the error function is also closely related to the [[Q-function]], which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function as <math display="block">\begin{align} Q(x) &= \frac{1}{2} - \frac{1}{2} \operatorname{erf} \frac{x}{\sqrt 2}\\ &= \frac{1}{2}\operatorname{erfc}\frac{x}{\sqrt 2}. \end{align}</math> The [[inverse function|inverse]] of {{math|Ξ¦}} is known as the [[Quantile function|normal quantile function]], or [[probit]] function and may be expressed in terms of the inverse error function as <math display="block">\operatorname{probit}(p) = \Phi^{-1}(p) = \sqrt{2}\operatorname{erf}^{-1}(2p-1) = -\sqrt{2}\operatorname{erfc}^{-1}(2p).</math> The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics. The error function is a special case of the [[Mittag-Leffler function]], and can also be expressed as a [[confluent hypergeometric function]] (Kummer's function): <math display="block">\operatorname{erf} x = \frac{2x}{\sqrt\pi} M\left(\tfrac{1}{2},\tfrac{3}{2},-x^2\right).</math> It has a simple expression in terms of the [[Fresnel integral]].{{Elucidate|date=May 2012}} In terms of the [[regularized gamma function]] {{mvar|P}} and the [[incomplete gamma function]], <math display="block">\operatorname{erf} x = \sgn x \cdot P\left(\tfrac{1}{2}, x^2\right) = \frac{\sgn x}{\sqrt\pi} \gamma{\left(\tfrac{1}{2}, x^2\right)}.</math>{{math|sgn ''x''}} is the [[sign function]]. ===Iterated integrals of the complementary error function=== The iterated integrals of the complementary error function are defined by<ref>{{cite book | last1 = Carslaw | first1 = H. S. |author1-link = Horatio Scott Carslaw | last2 = Jaeger | first2 = J. C.| author2-link = John Conrad Jaeger | year = 1959 | title = Conduction of Heat in Solids | edition = 2nd | publisher = Oxford University Press | isbn = 978-0-19-853368-9 | page = 484}}</ref> <math display="block">\begin{align} i^n\!\operatorname{erfc} z &= \int_z^\infty i^{n-1}\!\operatorname{erfc} \zeta\,\mathrm d\zeta \\[6pt] i^0\!\operatorname{erfc} z &= \operatorname{erfc} z \\ i^1\!\operatorname{erfc} z &= \operatorname{ierfc} z = \frac{1}{\sqrt\pi} e^{-z^2} - z \operatorname{erfc} z \\ i^2\!\operatorname{erfc} z &= \tfrac{1}{4} \left( \operatorname{erfc} z -2 z \operatorname{ierfc} z \right) \\ \end{align}</math> The general recurrence formula is <math display="block">2 n \cdot i^n\!\operatorname{erfc} z = i^{n-2}\!\operatorname{erfc} z -2 z \cdot i^{n-1}\!\operatorname{erfc} z</math> They have the power series <math display="block">i^n\!\operatorname{erfc} z =\sum_{j=0}^\infty \frac{(-z)^j}{2^{n-j}j! \,\Gamma \left( 1 + \frac{n-j}{2}\right)},</math> from which follow the symmetry properties <math display="block">i^{2m}\!\operatorname{erfc} (-z) =-i^{2m}\!\operatorname{erfc} z +\sum_{q=0}^m \frac{z^{2q}}{2^{2(m-q)-1}(2q)! (m-q)!}</math> and <math display="block">i^{2m+1}\!\operatorname{erfc}(-z) =i^{2m+1}\!\operatorname{erfc} z +\sum_{q=0}^m \frac{z^{2q+1}}{2^{2(m-q)-1}(2q+1)! (m-q)!}. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Error function
(section)
Add topic