Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Determinant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Laplace expansion === [[Laplace expansion]] expresses the determinant of a matrix <math>A</math> [[Recursion|recursively]] in terms of determinants of smaller matrices, known as its [[minor (matrix)|minors]]. The minor <math>M_{i,j}</math> is defined to be the determinant of the <math>(n-1) \times (n-1)</math> matrix that results from <math>A</math> by removing the <math>i</math>-th row and the <math>j</math>-th column. The expression <math>(-1)^{i+j}M_{i,j}</math> is known as a [[cofactor (linear algebra)|cofactor]]. For every <math>i</math>, one has the equality :<math>\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{i,j} M_{i,j},</math> which is called the ''Laplace expansion along the {{mvar|i}}th row''. For example, the Laplace expansion along the first row (<math>i=1</math>) gives the following formula: :<math> \begin{vmatrix}a&b&c\\ d&e&f\\ g&h&i\end{vmatrix} = a\begin{vmatrix}e&f\\ h&i\end{vmatrix} - b\begin{vmatrix}d&f\\ g&i\end{vmatrix} + c\begin{vmatrix}d&e\\ g&h\end{vmatrix} </math> Unwinding the determinants of these <math>2 \times 2</math>-matrices gives back the Leibniz formula mentioned above. Similarly, the ''Laplace expansion along the <math>j</math>-th column'' is the equality :<math>\det(A)= \sum_{i=1}^n (-1)^{i+j} a_{i,j} M_{i,j}.</math> Laplace expansion can be used iteratively for computing determinants, but this approach is inefficient for large matrices. However, it is useful for computing the determinants of highly symmetric matrix such as the [[Vandermonde matrix]] <math display="block">\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} \left(x_j - x_i\right). </math>The ''n''-term Laplace expansion along a row or column can be [[Laplace expansion#Laplace expansion of a determinant by complementary minors|generalized]] to write an ''n'' x ''n'' determinant as a sum of <math>\tbinom nk</math> [[Binomial coefficient|terms]], each the product of the determinant of a ''k'' x ''k'' [[Minor (linear algebra)|submatrix]] and the determinant of the complementary (''nβk'') x (''nβk'') submatrix.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Determinant
(section)
Add topic