Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Correlation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bivariate normal distribution== If a pair <math>\ (X,Y)\ </math> of random variables follows a [[bivariate normal distribution]], the conditional mean <math>\operatorname{\boldsymbol\mathcal E}(X \mid Y)</math> is a linear function of <math>Y</math>, and the conditional mean <math>\operatorname{\boldsymbol\mathcal E}(Y \mid X)</math> is a linear function of <math>\ X ~.</math> The correlation coefficient <math>\ \rho_{X,Y}\ </math> between <math>\ X\ </math> and <math>\ Y\ ,</math> and the [[Marginal distribution|marginal]] means and variances of <math>\ X\ </math> and <math>\ Y\ </math> determine this linear relationship: :<math>\operatorname{\boldsymbol\mathcal E}(Y \mid X ) = \operatorname{\boldsymbol\mathcal E}(Y) + \rho_{X,Y} \cdot \sigma_Y \cdot \frac{\ X-\operatorname{\boldsymbol\mathcal E}(X)\ }{ \sigma_X }\ ,</math> where <math>\operatorname{\boldsymbol\mathcal E}(X)</math> and <math>\operatorname{\boldsymbol\mathcal E}(Y)</math> are the expected values of <math>\ X\ </math> and <math>\ Y\ ,</math> respectively, and <math>\ \sigma_X\ </math> and <math>\ \sigma_Y\ </math> are the standard deviations of <math>\ X\ </math> and <math>\ Y\ ,</math> respectively. The empirical correlation <math>r</math> is an [[Estimation|estimate]] of the correlation coefficient <math>\ \rho ~.</math> A distribution estimate for <math>\ \rho\ </math> is given by : <math display="block">\pi ( \rho \mid r ) = \frac{\ \Gamma(N)\ }{\ \sqrt{ 2\pi\ } \cdot \Gamma( N - \tfrac{\ 1\ }{ 2 } )\ } \cdot \bigl( 1 - r^2 \bigr)^{ \frac{\ N\ - 2\ }{ 2 } } \cdot \bigl( 1 - \rho^2 \bigr)^{ \frac{\ N - 3\ }{ 2 } } \cdot \bigl( 1 - r \rho \bigr)^{ - N + \frac{\ 3 \ }{ 2 } } \cdot F_\mathsf{Hyp} \left(\ \tfrac{\ 3\ }{ 2 } , -\tfrac{\ 1\ }{ 2 } ; N - \tfrac{\ 1\ }{ 2 } ; \frac{\ 1 + r \rho\ }{ 2 }\ \right)\ </math> where <math>\ F_\mathsf{Hyp} \ </math> is the [[Gaussian hypergeometric function]]. This density is both a Bayesian [[posterior probability|posterior]] density and an exact optimal [[confidence distribution]] density.<ref>{{cite journal |last=Taraldsen |first=Gunnar |date=2021 |title=The confidence density for correlation |journal=Sankhya A |volume=85 |pages=600β616 |lang=en |s2cid=244594067 |issn=0976-8378 |doi=10.1007/s13171-021-00267-y |doi-access=free|hdl=11250/3133125 |hdl-access=free }}</ref><ref>{{cite report |last=Taraldsen |first=Gunnar |date=2020 |title=Confidence in correlation |lang=en |type=preprint |doi=10.13140/RG.2.2.23673.49769 |website=researchgate.net |url=http://rgdoi.net/10.13140/RG.2.2.23673.49769}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Correlation
(section)
Add topic