Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Continuum mechanics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Clausius–Duhem inequality=== The [[Clausius–Duhem inequality]] can be used to express the second law of thermodynamics for elastic-plastic materials. This inequality is a statement concerning the irreversibility of natural processes, especially when energy dissipation is involved. Just like in the balance laws in the previous section, we assume that there is a flux of a quantity, a source of the quantity, and an internal density of the quantity per unit mass. The quantity of interest in this case is the entropy. Thus, we assume that there is an entropy flux, an entropy source, an internal mass density <math>\rho</math> and an internal specific entropy (i.e. entropy per unit mass) <math>\eta</math> in the region of interest. Let <math>\Omega</math> be such a region and let <math>\partial \Omega </math> be its boundary. Then the second law of thermodynamics states that the rate of increase of <math>\eta</math> in this region is greater than or equal to the sum of that supplied to <math>\Omega</math> (as a flux or from internal sources) and the change of the internal entropy density <math>\rho\eta</math> due to material flowing in and out of the region. Let <math>\partial \Omega </math> move with a flow velocity <math>u_n</math> and let particles inside <math>\Omega</math> have velocities <math>\mathbf{v}</math>. Let <math>\mathbf{n}</math> be the unit outward normal to the surface <math>\partial \Omega </math>. Let <math>\rho</math> be the density of matter in the region, <math>\bar{q}</math> be the entropy flux at the surface, and <math>r</math> be the entropy source per unit mass. Then the entropy inequality may be written as :<math> \cfrac{d}{dt}\left(\int_{\Omega} \rho~\eta~\text{dV}\right) \ge \int_{\partial \Omega} \rho~\eta~(u_n - \mathbf{v}\cdot\mathbf{n}) ~\text{dA} + \int_{\partial \Omega} \bar{q}~\text{dA} + \int_{\Omega} \rho~r~\text{dV}. </math> The scalar entropy flux can be related to the vector flux at the surface by the relation <math>\bar{q} = -\boldsymbol{\psi}(\mathbf{x})\cdot\mathbf{n}</math>. Under the assumption of incrementally isothermal conditions, we have :<math> \boldsymbol{\psi}(\mathbf{x}) = \cfrac{\mathbf{q}(\mathbf{x})}{T} ~;~~ r = \cfrac{s}{T} </math> where <math>\mathbf{q}</math> is the heat flux vector, <math>s</math> is an energy source per unit mass, and <math>T</math> is the absolute temperature of a material point at <math>\mathbf{x}</math> at time <math>t</math>. We then have the Clausius–Duhem inequality in integral form: :<math> { \cfrac{d}{dt}\left(\int_{\Omega} \rho~\eta~\text{dV}\right) \ge \int_{\partial \Omega} \rho~\eta~(u_n - \mathbf{v}\cdot\mathbf{n}) ~\text{dA} - \int_{\partial \Omega} \cfrac{\mathbf{q}\cdot\mathbf{n}}{T}~\text{dA} + \int_\Omega \cfrac{\rho~s}{T}~\text{dV}. } </math> We can show that the entropy inequality may be written in differential form as :<math> { \rho~\dot{\eta} \ge - \boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) + \cfrac{\rho~s}{T}. } </math> In terms of the Cauchy stress and the internal energy, the Clausius–Duhem inequality may be written as :<math> { \rho~(\dot{e} - T~\dot{\eta}) - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} \le - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T}. } </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Continuum mechanics
(section)
Add topic