Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Centromere
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sequence == There are two types of centromeres.<ref>{{cite journal | vauthors = Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC | title = The centromere: hub of chromosomal activities | journal = Science | volume = 270 | issue = 5242 | pages = 1591β1594 | date = December 1995 | pmid = 7502067 | doi = 10.1126/science.270.5242.1591 | s2cid = 44632550 | bibcode = 1995Sci...270.1591P }}</ref> In regional centromeres, [[DNA]] sequences contribute to but do not define function. Regional centromeres contain large amounts of DNA and are often packaged into [[heterochromatin]]. In most [[eukaryotes]], the centromere's DNA sequence consists of large arrays of repetitive DNA (e.g. [[satellite DNA]]) where the sequence within individual repeat elements is similar but not identical. In humans, the primary centromeric repeat unit is called Ξ±-satellite (or alphoid), although a number of other sequence types are found in this region.<ref name="Mehta2010">{{cite journal | vauthors = Mehta GD, Agarwal MP, Ghosh SK | title = Centromere identity: a challenge to be faced | journal = Molecular Genetics and Genomics | volume = 284 | issue = 2 | pages = 75β94 | date = August 2010 | pmid = 20585957 | doi = 10.1007/s00438-010-0553-4 | s2cid = 24881938 }}</ref> Centromere satellites are hypothesized to evolve by a process called layered expansion. They evolve rapidly between species, and analyses in wild mice show that satellite copy number and heterogeneity relates to population origins and subspecies.<ref name="Arora et al">{{cite journal | vauthors = Arora UP, Charlebois C, Lawal RA, Dumont BL | title = Population and subspecies diversity at mouse centromere satellites | journal = BMC Genomics | volume = 22 | issue = 1 | pages = 279 | date = April 2021 | pmid = 33865332 | pmc = 8052823 | doi = 10.1186/s12864-021-07591-5 | doi-access = free }}</ref> Additionally, satellite sequences may be affected by inbreeding.<ref name="Arora et al" /> Point centromeres are smaller and more compact. DNA sequences are both necessary and sufficient to specify centromere identity and function in organisms with point centromeres. In budding yeasts, the centromere region is relatively small (about 125 bp DNA) and contains two highly conserved DNA sequences that serve as binding sites for essential [[kinetochore]] proteins.<ref name="Mehta2010"/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Centromere
(section)
Add topic