Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Centripetal force
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Example: circular motion ===== To illustrate the above formulas, let ''x'', ''y'' be given as: : <math>x = \alpha \cos \frac{s}{\alpha} \ ; \ y = \alpha \sin\frac{s}{\alpha} \ .</math> Then: : <math>x^2 + y^2 = \alpha^2 \ , </math> which can be recognized as a circular path around the origin with radius ''Ξ±''. The position ''s'' = 0 corresponds to [''Ξ±'', 0], or 3 o'clock. To use the above formalism, the derivatives are needed: : <math>y^{\prime}(s) = \cos \frac{s}{\alpha} \ ; \ x^{\prime}(s) = -\sin \frac{s}{\alpha} \ , </math> : <math>y^{\prime\prime}(s) = -\frac{1}{\alpha}\sin\frac{s}{\alpha} \ ; \ x^{\prime\prime}(s) = -\frac{1}{\alpha}\cos \frac{s}{\alpha} \ . </math> With these results, one can verify that: : <math> x^{\prime}(s)^2 + y^{\prime}(s)^2 = 1 \ ; \ \frac{1}{\rho} = y^{\prime\prime}(s)x^{\prime}(s)-y^{\prime}(s)x^{\prime\prime}(s) = \frac{1}{\alpha} \ . </math> The unit vectors can also be found: : <math>\mathbf{u}_\mathrm{t}(s) = \left[-\sin\frac{s}{\alpha} \ , \ \cos\frac{s}{\alpha} \right] \ ; \ \mathbf{u}_\mathrm{n}(s) = \left[\cos\frac{s}{\alpha} \ , \ \sin\frac{s}{\alpha} \right] \ , </math> which serve to show that ''s'' = 0 is located at position [''Ο'', 0] and ''s'' = ''Ο''Ο/2 at [0, ''Ο''], which agrees with the original expressions for ''x'' and ''y''. In other words, ''s'' is measured counterclockwise around the circle from 3 o'clock. Also, the derivatives of these vectors can be found: : <math>\frac{\mathrm{d}}{\mathrm{d}s}\mathbf{u}_\mathrm{t}(s) = -\frac{1}{\alpha} \left[\cos\frac{s}{\alpha} \ , \ \sin\frac{s}{\alpha} \right] = -\frac{1}{\alpha}\mathbf{u}_\mathrm{n}(s) \ ; </math> : <math> \ \frac{\mathrm{d}}{\mathrm{d}s}\mathbf{u}_\mathrm{n}(s) = \frac{1}{\alpha} \left[-\sin\frac{s}{\alpha} \ , \ \cos\frac{s}{\alpha} \right] = \frac{1}{\alpha}\mathbf{u}_\mathrm{t}(s) \ . </math> To obtain velocity and acceleration, a time-dependence for ''s'' is necessary. For counterclockwise motion at variable speed ''v''(''t''): : <math>s(t) = \int_0^t \ dt^{\prime} \ v(t^{\prime}) \ , </math> where ''v''(''t'') is the speed and ''t'' is time, and ''s''(''t'' = 0) = 0. Then: : <math>\mathbf{v} = v(t)\mathbf{u}_\mathrm{t}(s) \ ,</math> : <math>\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}\mathbf{u}_\mathrm{t}(s) + v\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{u}_\mathrm{t}(s) = \frac{\mathrm{d}v}{\mathrm{d}t}\mathbf{u}_\mathrm{t}(s)-v\frac{1}{\alpha}\mathbf{u}_\mathrm{n}(s)\frac{\mathrm{d}s}{\mathrm{d}t} </math> : <math>\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}\mathbf{u}_\mathrm{t}(s)-\frac{v^2}{\alpha}\mathbf{u}_\mathrm{n}(s) \ , </math> where it already is established that Ξ± = Ο. This acceleration is the standard result for [[non-uniform circular motion]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Centripetal force
(section)
Add topic