Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cauchy–Schwarz inequality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof by analyzing a quadratic=== Consider an arbitrary pair of vectors <math>\mathbf{u}, \mathbf{v}</math>. Define the function <math>p : \R \to \R</math> defined by <math>p(t) = \langle t\alpha\mathbf{u} + \mathbf{v}, t\alpha\mathbf{u} + \mathbf{v}\rangle</math>, where <math>\alpha</math> is a complex number satisfying <math>|\alpha| = 1</math> and <math>\alpha\langle\mathbf{u}, \mathbf{v}\rangle = |\langle\mathbf{u}, \mathbf{v}\rangle|</math>. Such an <math>\alpha</math> exists since if <math>\langle\mathbf{u}, \mathbf{v}\rangle = 0</math> then <math>\alpha</math> can be taken to be 1. Since the inner product is positive-definite, <math>p(t)</math> only takes non-negative real values. On the other hand, <math>p(t)</math> can be expanded using the bilinearity of the inner product: <math display=block>\begin{align} p(t) &= \langle t\alpha\mathbf{u}, t\alpha\mathbf{u}\rangle + \langle t\alpha\mathbf{u}, \mathbf{v}\rangle + \langle\mathbf{v}, t\alpha\mathbf{u}\rangle + \langle\mathbf{v}, \mathbf{v}\rangle \\ &= t\alpha t\overline{\alpha}\langle\mathbf{u}, \mathbf{u}\rangle + t\alpha\langle\mathbf{u}, \mathbf{v}\rangle + t\overline{\alpha}\langle \mathbf{v}, \mathbf{u}\rangle + \langle\mathbf{v}, \mathbf{v}\rangle \\ &= \lVert \mathbf{u} \rVert^2 t^2 + 2|\langle\mathbf{u}, \mathbf{v}\rangle|t + \lVert \mathbf{v} \rVert^2 \end{align}</math> Thus, <math>p</math> is a polynomial of degree <math>2</math> (unless <math>\mathbf{u} = 0,</math> which is a case that was checked earlier). Since the sign of <math>p</math> does not change, the discriminant of this polynomial must be non-positive: <math display=block>\Delta = 4 \bigl(\,|\langle \mathbf{u}, \mathbf{v} \rangle|^2 - \Vert \mathbf{u} \Vert^2 \Vert \mathbf{v} \Vert^2\bigr) \leq 0.</math> The conclusion follows.<ref>{{Cite book|title=Real and Complex Analysis|last=Rudin|first=Walter|publisher=McGraw-Hill|year=1987|isbn=0070542341|edition=3rd|location=New York|orig-year=1966}}</ref> For the equality case, notice that <math>\Delta = 0</math> happens if and only if <math>p(t) = \bigl(t\Vert \mathbf{u} \Vert + \Vert \mathbf{v} \Vert\bigr)^2.</math> If <math>t_0 = -\Vert \mathbf{v} \Vert / \Vert \mathbf{u} \Vert,</math> then <math>p(t_0) = \langle t_0\alpha\mathbf{u} + \mathbf{v},t_0\alpha\mathbf{u} + \mathbf{v}\rangle = 0,</math> and hence <math>\mathbf{v} = -t_0\alpha\mathbf{u}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cauchy–Schwarz inequality
(section)
Add topic