Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Axiom
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Euclidean geometry===== Probably the oldest, and most famous, list of axioms are the 4 + 1 [[Euclid's postulates]] of [[Euclidean geometry|plane geometry]]. The axioms are referred to as "4 + 1" because for nearly two millennia the [[parallel postulate|fifth (parallel) postulate]] ("through a point outside a line there is exactly one parallel") was suspected of being derivable from the first four. Ultimately, the fifth postulate was found to be independent of the first four. One can assume that exactly one parallel through a point outside a line exists, or that infinitely many exist. This choice gives us two alternative forms of geometry in which the interior [[angle]]s of a [[triangle]] add up to exactly 180 degrees or less, respectively, and are known as Euclidean and [[hyperbolic geometry|hyperbolic]] geometries. If one also removes the second postulate ("a line can be extended indefinitely") then [[elliptic geometry]] arises, where there is no parallel through a point outside a line, and in which the interior angles of a triangle add up to more than 180 degrees.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Axiom
(section)
Add topic