Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Atomic orbital
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Real orbitals === [[Image:Orbital p1-px animation.gif|thumb|220px|Animation of continuously varying superpositions between the {{math|p{{sub|1}}}} and the {{math|p{{sub|''x''}}}} orbitals. This animation does not use the Condon–Shortley phase convention.]] Instead of the complex orbitals described above, it is common, especially in the chemistry literature, to use ''real'' atomic orbitals. These real orbitals arise from simple linear combinations of complex orbitals. Using the [[Spherical harmonics#Condon–Shortley phase|Condon–Shortley phase convention]], real orbitals are related to complex orbitals in the same way that the real spherical harmonics are related to complex spherical harmonics. Letting <math>\psi_{n,\ell, m}</math> denote a complex orbital with quantum numbers {{mvar|n}}, {{mvar|ℓ}}, and {{mvar|m}}, the real orbitals <math>\psi_{n, \ell, m}^{\text{real}}</math> may be defined by<ref>{{cite book |last1=Thaller |first1=Bernd |title=Advanced visual quantum mechanics |date=2004 |publisher=Springer/TELOS |location=New York |isbn=978-0387207773}}</ref> <math display="block">\begin{align} \psi_{n,\ell, m}^{\text{real}} &= \begin{cases} \sqrt{2} (-1)^m \text{Im}\left\{\psi_{n,\ell,|m|}\right\} &\text{ for } m<0 \\[2pt] \psi_{n,\ell,|m|} &\text{ for } m=0\\[2pt] \sqrt{2} (-1)^m \text{Re}\left\{\psi_{n,\ell,|m|}\right\} &\text{ for } m>0 \end{cases} \\[4pt] &= \begin{cases} \frac{i}{\sqrt{2}}\left(\psi_{n,\ell, -|m|} - (-1)^m \psi_{n,\ell, |m|}\right) & \text{ for } m<0 \\[2pt] \psi_{n, \ell, |m|}& \text{ for } m=0 \\[4pt] \frac{1}{\sqrt{2}}\left(\psi_{n,\ell, -|m|} + (-1)^m \psi_{n,\ell, |m|}\right) & \text{ for } m>0 \end{cases} \end{align}</math> If <math>\psi_{n,\ell, m}(r, \theta, \phi) = R_{nl}(r) Y_{\ell}^m(\theta, \phi)</math>, with <math>R_{nl}(r)</math> the radial part of the orbital, this definition is equivalent to <math>\psi_{n,\ell, m}^{\text{real}}(r, \theta, \phi) = R_{nl}(r) Y_{\ell m}(\theta, \phi)</math> where <math>Y_{\ell m}</math> is the real spherical harmonic related to either the real or imaginary part of the complex spherical harmonic <math>Y_{\ell}^m</math>. Real spherical harmonics are physically relevant when an atom is embedded in a crystalline solid, in which case there are multiple preferred symmetry axes but no single preferred direction.{{citation needed|date=February 2022}} Real atomic orbitals are also more frequently encountered in introductory chemistry textbooks and shown in common orbital visualizations.<ref>{{cite book |title=General chemistry: principles and modern applications. |author1=Petrucci, Ralph |author2=Herring, F. |author3=Madura, Jeffry |author4=Bissonnette, Carey |date=2016 |edition=11th |publisher=Prentice Hall |location=[Place of publication not identified] |isbn=978-0133897319}}</ref> In real hydrogen-like orbitals, quantum numbers {{mvar|n}} and {{mvar|ℓ}} have the same interpretation and significance as their complex counterparts, but {{mvar|m}} is no longer a good quantum number (but its absolute value is). Some real orbitals are given specific names beyond the simple <math>\psi_{n, \ell, m}</math> designation. Orbitals with quantum number {{math|1=''ℓ'' = 0, 1, 2, 3, 4, 5, 6...}} are called {{math|s, p, d, f, g, h, i, ...}} orbitals. With this one can already assign names to complex orbitals such as <math>2\text{p}_{\pm 1} = \psi_{2, 1, \pm 1}</math>; the first symbol is the {{mvar|n}} quantum number, the second character is the symbol for that particular {{mvar|ℓ}} quantum number and the subscript is the {{mvar|m}} quantum number. As an example of how the full orbital names are generated for real orbitals, one may calculate <math>\psi_{n, 1, \pm 1}^{\text{real}}</math>. From the [[table of spherical harmonics]], <math display="inline">\psi_{n, 1, \pm1} = R_{n, 1}Y_1^{\pm 1} = \mp R_{n, 1} \sqrt{3/8\pi} \cdot (x\pm i y)/r</math> with <math display=inline>r = \sqrt{x^2+y^2+z^2}</math>. Then <math display=block>\begin{align} \psi_{n, 1, +1}^\text{real} &= R_{n, 1} \sqrt{\frac{3}{4\pi}} \cdot \frac{x}{r}\\ \psi_{n, 1, -1}^\text{real} &= R_{n, 1} \sqrt{\frac{3}{4\pi}} \cdot \frac{y}{r} \end{align}</math> Likewise <math display="inline">\psi_{n, 1, 0} = R_{n, 1} \sqrt{3/4\pi} \cdot z/r</math>. As a more complicated example: <math display=block> \psi_{n, 3, +1}^\text{real} = R_{n, 3} \frac{1}{4} \sqrt{\frac{21}{2\pi}} \cdot \frac{x\cdot (5z^2 - r^2)}{r^3} </math> In all these cases we generate a Cartesian label for the orbital by examining, and abbreviating, the polynomial in {{math|''x'', ''y'', ''z''}} appearing in the numerator. We ignore any terms in the {{math|''z'', ''r''}} polynomial except for the term with the highest exponent in {{mvar|z}}. We then use the abbreviated polynomial as a subscript label for the atomic state, using the same nomenclature as above to indicate the <math>n</math> and <math>\ell</math> quantum numbers.{{cn|date=March 2024}} <math display=block> \begin{align} \psi_{n, 1, -1}^\text{real} &= n\text{p}_y = \frac{i}{\sqrt{2}} \left(n\text{p}_{-1} + n\text{p}_{+1}\right)\\ \psi_{n, 1, 0}^\text{real} &= n\text{p}_z = 2\text{p}_0\\ \psi_{n, 1, +1}^\text{real} &= n\text{p}_x = \frac{1}{\sqrt{2}} \left(n\text{p}_{-1} - n\text{p}_{+1}\right)\\ \psi_{n, 3, +1}^\text{real} &= nf_{xz^2} = \frac{1}{\sqrt{2}} \left(nf_{-1} - nf_{+1}\right) \end{align} </math> The expression above all use the [[Spherical harmonics#Condon–Shortley phase|Condon–Shortley phase convention]] which is favored by quantum physicists.<ref>{{cite book| last=Messiah|first=Albert|title=Quantum mechanics : two volumes bound as one| year=1999|publisher=Dover|location=Mineola, NY| isbn=978-0-486-40924-5|edition=Two vol. bound as one, unabridged reprint}}</ref><ref>{{cite book|author1=Claude Cohen-Tannoudji |author2=Bernard Diu |author3=Franck Laloë |translator=from the French by Susan Reid Hemley|title=Quantum mechanics |year=1996 |publisher=Wiley-Interscience |isbn=978-0-471-56952-7 |display-authors=etal}}</ref> Other conventions exist for the phase of the spherical harmonics.<ref name=Levine7ed>{{cite book| last=Levine|first=Ira|title=Quantum Chemistry| edition=7th| year=2014| publisher=Pearson Education| isbn=978-0-321-80345-0| pages=141–2}}</ref><ref>{{cite journal|author1=Blanco, Miguel A. |author2=Flórez, M. |author3=Bermejo, M. |date= December 1997|title=Evaluation of the rotation matrices in the basis of real spherical harmonics|journal=Journal of Molecular Structure: THEOCHEM |volume=419 |issue=1–3|pages=19–27|doi=10.1016/S0166-1280(97)00185-1}}</ref> Under these different conventions the <math>\text{p}_x</math> and <math>\text{p}_y</math> orbitals may appear, for example, as the sum and difference of <math>\text{p}_{+1}</math> and <math>\text{p}_{-1}</math>, contrary to what is shown above. Below is a list of these Cartesian polynomial names for the atomic orbitals.<ref>{{cite book |title=General chemistry : principles and modern applications. |date=2016 |publisher=Prentice Hall |location=[Place of publication not identified] |isbn=978-0133897319}}</ref><ref>{{cite journal |last1=Friedman |title=The shapes of the f orbitals |journal=J. Chem. Educ. |year=1964 |volume=41 |issue=7 |page=354 |doi=10.1021/ed041p354 |bibcode=1964JChEd..41..354F }}</ref> There does not seem to be reference in the literature as to how to abbreviate the long Cartesian spherical harmonic polynomials for <math>\ell>3</math> so there does not seem be consensus on the naming of <math>g</math> orbitals or higher according to this nomenclature.{{cn|date=March 2024}} {| class="wikitable" |- ! ! <math>\psi_{m=-3}+\psi_{m=+3}</math> ! <math>\psi_{m=-2}+\psi_{m=+2}</math> ! <math>\psi_{m=-1}+\psi_{m=+1}</math> ! <math>\psi_{m=0}</math> ! <math>\psi_{m=-1}-\psi_{m=+1}</math> ! <math>\psi_{m=-2}-\psi_{m=+2}</math> ! <math>\psi_{m=-3}-\psi_{m=+3}</math> |- ! <math>\ell=0</math> || || || || <math>\text{s}</math> || || || |- ! <math>\ell=1</math> || || || <math>\text{p}_y</math> || <math>\text{p}_z</math> || <math>\text{p}_x</math> || || |- ! <math>\ell=2</math> || || <math>\text{d}_{x^2-y^2}</math>|| <math>\text{d}_{yz}</math> || <math>\text{d}_{z^2}</math> || <math>\text{d}_{xz}</math> || <math>\text{d}_{xy }</math>|| |- ! <math>\ell=3</math> || <math>\text{f}_{y(3x^2-y^2)}</math>|| <math>\text{f}_{z(x^2-y^2)}</math>|| <math>\text{f}_{yz^2}</math> || <math>\text{f}_{z^3}</math> || <math>\text{f}_{xz^2}</math> || <math>\text{f}_{xyz}</math>|| <math>\text{f}_{x(x^2-3y^2)}</math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Atomic orbital
(section)
Add topic