Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Wormhole
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Metrics == Theories of ''wormhole metrics'' describe the spacetime geometry of a wormhole and serve as theoretical models for time travel. An example of a (traversable) wormhole [[metric tensor|metric]] is the following:<ref>{{cite book |last1=Raine |first1=Derek |last2=Thomas |first2=Edwin |date=2009 |title= Black Holes: An Introduction |url=https://archive.org/details/blackholesintrod00rain |url-access=limited |publisher=Imperial College Press |page=[https://archive.org/details/blackholesintrod00rain/page/n156 143] |isbn=978-1-84816-383-6 |edition=2nd|doi=10.1142/p637 }}</ref> {{block indent|<math>ds^2= - c^2 \, dt^2 + d\ell^2 + (k^2 + \ell^2)(d \theta^2 + \sin^2 \theta \, d\varphi^2),</math>}} first presented by Ellis (see [[Ellis wormhole]]) as a special case of the [[Ellis drainhole]]. One type of non-traversable wormhole [[metric tensor|metric]] is the [[Schwarzschild metric|Schwarzschild solution]] (see the first diagram): {{block indent|<math>ds^2= - c^2 \left(1 - \frac{2GM}{rc^2}\right) \, dt^2 + \frac{dr^2}{1 - \frac{2GM}{rc^2}} + r^2(d \theta^2 + \sin^2 \theta \, d\varphi^2).</math>}} The original Einstein–Rosen bridge was described in an article published in July 1935.<ref>{{cite journal |last1=Einstein |first1=A. |last2=Rosen |first2=N. |title=The Particle Problem in the General Theory of Relativity |journal=Physical Review |date=1 July 1935 |volume=48 |issue=1 |pages=73–77 |doi=10.1103/PhysRev.48.73 |bibcode = 1935PhRv...48...73E |doi-access=free}}</ref><ref>{{Cite web |url=https://www.youtube.com/watch?v=OBPpRqxY8Uw |archive-url=https://ghostarchive.org/varchive/youtube/20211211/OBPpRqxY8Uw |archive-date=2021-12-11 |url-status=live |title=Leonard Susskind | "ER = EPR" or "What's Behind the Horizons of Black Holes?" |date=4 November 2014 |via=www.youtube.com}}{{cbignore}}</ref> For the Schwarzschild spherically symmetric static solution {{block indent|<math>ds^2 = - \frac{1}{1 - \frac{2m}{r}} \, dr^2 - r^2(d\theta^2 + \sin^2 \theta \, d\varphi^2) + \left(1 - \frac{2m}{r} \right) \, dt^2,</math>}} where <math>ds</math> is the proper time and <math>c = 1</math>. If one replaces <math>r</math> with <math>u</math> according to <math>u^2 = r - 2m</math> {{block indent|<math>ds^2 = -4(u^2 + 2m)\,du^2 - (u^2 + 2m)^2(d\theta^2 + \sin^2 \theta \, d\varphi^2) + \frac{u^2}{u^2 + 2m} \, dt^2 </math>}} {{Blockquote|text=The four-dimensional space is described mathematically by two congruent parts or "sheets", corresponding to <math>u>0</math> and <math>u< 0</math>, which are joined by a hyperplane <math>r = 2m</math> or <math>u= 0</math> in which <math>g</math> vanishes. We call such a connection between the two sheets a "bridge".|author=A. Einstein, N. Rosen, "The Particle Problem in the General Theory of Relativity"|source=}} For the combined field, gravity and electricity, Einstein and Rosen derived the following Schwarzschild static spherically symmetric solution {{block indent|<math>\varphi_1 = \varphi_2 = \varphi_3 = 0, \varphi_4 = \frac{\varepsilon}{4},</math>}} {{block indent|<math>ds^2 = - \frac{1}{\left( 1 - \frac{2m}{r} - \frac{\varepsilon^2}{2 r^2}\right)} \, dr^2 - r^2 (d\theta^2 + \sin^2 \theta \, d\varphi^2) + \left(1 - \frac{2m}{r} - \frac{\varepsilon^2}{2 r^2}\right) \, dt^2,</math>}} where <math>\varepsilon</math> is the electric charge. The field equations without denominators in the case when <math>m = 0</math> can be written {{block indent|<math>\varphi_{\mu \nu} = \varphi_{\mu,\nu} - \varphi_{\nu,\mu}</math>}} {{block indent|<math>g^2 \varphi_{\mu\nu;\sigma}g^{\nu\sigma} = 0</math>}} {{block indent|<math>g^2 (R_{ik} + \varphi_{i\alpha}\varphi_k^\alpha - \frac{1}{4} g_{ik} \varphi_{\alpha\beta}\varphi^{\alpha\beta}) = 0</math>}} In order to eliminate singularities, if one replaces <math>r</math> by <math>u</math> according to the equation: {{block indent|<math>u^2 = r^2 - \frac{\varepsilon^2}{2}</math>}} and with <math>m = 0</math> one obtains<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2015/09/150903081506.htm|title=Magnetic 'wormhole' connecting two regions of space created for the first time|website=ScienceDaily}}</ref><ref>{{Cite web|url=http://www.uab.cat/web/newsroom/news-detail/magnetic-wormhole-created-for-first-time-1345668003610.html?noticiaid=1345689132054|title=Magnetic wormhole created for first time|website=UAB Barcelona}}</ref> {{block indent|<math>\varphi_1 = \varphi_2 = \varphi_3 = 0</math> and <math>\varphi_4 = \frac{\varepsilon}{\left( u^2 + \frac{\varepsilon^2}{2} \right)^{1/2}}</math>}} {{block indent|<math>ds^2 = - du^2 - \left(u^2 + \frac{\varepsilon^2}{2}\right)(d \theta^2 + \sin^2 \theta \, d\varphi^2) + \left(\frac{2 u^2}{2 u^2 + \varepsilon^2}\right) \, dt^2</math>}} {{Blockquote|text=The solution is free from singularities for all finite points in the space of the two sheets|author=A. Einstein, N. Rosen, "The Particle Problem in the General Theory of Relativity"}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Wormhole
(section)
Add topic