Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
VHDL
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Simulation-only constructs=== A large subset of VHDL cannot be translated into hardware. This subset is known as the non-synthesizable or the simulation-only subset of VHDL and can only be used for prototyping, simulation and debugging. For example, the following code will generate a clock with a frequency of 50 MHz. It can, for example, be used to drive a clock input in a design during simulation. It is, however, a simulation-only construct and cannot be implemented in hardware. In actual hardware, the clock is generated externally; it can be scaled down internally by user logic or dedicated hardware. <syntaxhighlight Lang="VHDL"> process begin CLK <= '1'; wait for 10 NS; CLK <= '0'; wait for 10 NS; end process; </syntaxhighlight> The simulation-only constructs can be used to build complex waveforms in a very short time. Such waveforms can be used, for example, as test vectors for a complex design or as a prototype of some synthesizer logic that will be implemented in the future. <syntaxhighlight Lang="VHDL"> process begin wait until START = '1'; -- wait until START is high for i in 1 to 10 loop -- then wait for a few clock periods... wait until rising_edge(CLK); end loop; for i in 1 to 10 loop -- write numbers 1 to 10 to DATA, 1 every cycle DATA <= to_unsigned(i, 8); wait until rising_edge(CLK); end loop; -- wait until the output changes wait on RESULT; -- now raise ACK for clock period ACK <= '1'; wait until rising_edge(CLK); ACK <= '0'; -- and so on... end process; </syntaxhighlight>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
VHDL
(section)
Add topic