Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Spherical coordinate system
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Integration and differentiation in spherical coordinates == [[File:Kugelkoord-lokb-e.svg|thumb|Unit vectors in spherical coordinates]] The following equations (Iyanaga 1977) assume that the colatitude {{mvar|θ}} is the inclination from the positive {{mvar|z}} axis, as in the ''physics convention'' discussed. The [[line element]] for an infinitesimal displacement from {{math|(''r'', ''θ'', ''φ'')}} to {{math|(''r'' + d''r'', ''θ'' + d''θ'', ''φ'' + d''φ'')}} is <math display="block"> \mathrm{d}\mathbf{r} = \mathrm{d}r\,\hat{\mathbf r} + r\,\mathrm{d}\theta \,\hat{\boldsymbol\theta } + r \sin{\theta} \, \mathrm{d}\varphi\,\mathbf{\hat{\boldsymbol\varphi}},</math> where <math display="block">\begin{align} \hat{\mathbf r} &= \sin \theta \cos \varphi \,\hat{\mathbf x} + \sin \theta \sin \varphi \,\hat{\mathbf y} + \cos \theta \,\hat{\mathbf z}, \\ \hat{\boldsymbol\theta} &= \cos \theta \cos \varphi \,\hat{\mathbf x} + \cos \theta \sin \varphi \,\hat{\mathbf y} - \sin \theta \,\hat{\mathbf z}, \\ \hat{\boldsymbol\varphi} &= - \sin \varphi \,\hat{\mathbf x} + \cos \varphi \,\hat{\mathbf y} \end{align}</math> are the local orthogonal [[unit vectors]] in the directions of increasing {{mvar|r}}, {{mvar|θ}}, and {{mvar|φ}}, respectively, and {{math|'''x̂'''}}, {{math|'''ŷ'''}}, and {{math|'''ẑ'''}} are the unit vectors in Cartesian coordinates. The linear transformation to this right-handed coordinate triplet is a [[rotation matrix]], <math display="block">R = \begin{pmatrix} \sin\theta\cos\varphi&\sin\theta\sin\varphi&\hphantom{-}\cos\theta\\ \cos\theta\cos\varphi&\cos\theta\sin\varphi&-\sin\theta\\ -\sin\varphi&\cos\varphi &\hphantom{-}0 \end{pmatrix}. </math> This gives the transformation from the Cartesian to the spherical, the other way around is given by its inverse. Note: the matrix is an [[orthogonal matrix]], that is, its inverse is simply its [[transpose]]. The Cartesian unit vectors are thus related to the spherical unit vectors by: <math display="block">\begin{bmatrix}\mathbf{\hat x} \\ \mathbf{\hat y} \\ \mathbf{\hat z} \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\varphi & \cos\theta\cos\varphi & -\sin\varphi \\ \sin\theta\sin\varphi & \cos\theta\sin\varphi & \hphantom{-}\cos\varphi \\ \cos\theta & -\sin\theta & \hphantom{-}0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\hat{r}} \\ \boldsymbol{\hat\theta} \\ \boldsymbol{\hat\varphi} \end{bmatrix}</math> The general form of the formula to prove the differential line element, is<ref name="q74503">{{cite web |title=Line element (dl) in spherical coordinates derivation/diagram |date=October 21, 2011 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/74503}}</ref> <math display="block">\mathrm{d}\mathbf{r} = \sum_i \frac{\partial \mathbf{r}}{\partial x_i} \,\mathrm{d}x_i = \sum_i \left|\frac{\partial \mathbf{r}}{\partial x_i}\right| \frac{\frac{\partial \mathbf{r}}{\partial x_i}}{\left|\frac{\partial \mathbf{r}}{\partial x_i}\right|} \, \mathrm{d}x_i = \sum_i \left|\frac{\partial \mathbf{r}}{\partial x_i}\right| \,\mathrm{d}x_i \, \hat{\boldsymbol{x}}_i, </math> that is, the change in <math>\mathbf r</math> is decomposed into individual changes corresponding to changes in the individual coordinates. To apply this to the present case, one needs to calculate how <math>\mathbf r</math> changes with each of the coordinates. In the conventions used, <math display="block">\mathbf{r} = \begin{bmatrix} r \sin\theta \, \cos\varphi \\ r \sin\theta \, \sin\varphi \\ r \cos\theta \end{bmatrix}, x_1=r, x_2=\theta, x_3=\varphi.</math> Thus, <math display="block"> \frac{\partial\mathbf r}{\partial r} = \begin{bmatrix} \sin\theta \, \cos\varphi \\ \sin\theta \, \sin\varphi \\ \cos\theta \end{bmatrix}=\mathbf{\hat r}, \quad \frac{\partial\mathbf r}{\partial \theta} = \begin{bmatrix} r \cos\theta \, \cos\varphi \\ r \cos\theta \, \sin\varphi \\ -r \sin\theta \end{bmatrix}=r\,\hat{\boldsymbol\theta }, \quad \frac{\partial\mathbf r}{\partial \varphi} = \begin{bmatrix} -r \sin\theta \, \sin\varphi \\ \hphantom{-}r \sin\theta \, \cos\varphi \\ 0 \end{bmatrix} = r \sin\theta\,\mathbf{\hat{\boldsymbol\varphi}} . </math> The desired coefficients are the magnitudes of these vectors:<ref name="q74503" /> <math display="block"> \left|\frac{\partial\mathbf r}{\partial r}\right| = 1, \quad \left|\frac{\partial\mathbf r}{\partial \theta}\right| = r, \quad \left|\frac{\partial\mathbf r}{\partial \varphi}\right| = r \sin\theta. </math> The [[Surface integral|surface element]] spanning from {{mvar|θ}} to {{math|''θ'' + d''θ''}} and {{mvar|φ}} to {{math|''φ'' + d''φ''}} on a spherical surface at (constant) radius {{mvar|r}} is then <math display="block"> \mathrm{d}S_r = \left\|\frac{\partial {\mathbf r}}{\partial \theta} \times \frac{\partial {\mathbf r}}{\partial \varphi}\right\| \mathrm{d}\theta \,\mathrm{d}\varphi = \left|r {\hat \boldsymbol\theta} \times r \sin \theta {\boldsymbol\hat \varphi} \right|\mathrm{d}\theta \,\mathrm{d}\varphi= r^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi ~. </math> Thus the differential [[solid angle]] is <math display="block">\mathrm{d}\Omega = \frac{\mathrm{d}S_r}{r^2} = \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\varphi.</math> The surface element in a surface of polar angle {{mvar|θ}} constant (a cone with vertex at the origin) is <math display="block">\mathrm{d}S_\theta = r \sin\theta \,\mathrm{d}\varphi \,\mathrm{d}r.</math> The surface element in a surface of azimuth {{mvar|φ}} constant (a vertical half-plane) is <math display="block">\mathrm{d}S_\varphi = r \,\mathrm{d}r \,\mathrm{d}\theta.</math> The [[volume element]] spanning from {{mvar|r}} to {{math|''r'' + d''r''}}, {{mvar|θ}} to {{math|''θ'' + d''θ''}}, and {{mvar|φ}} to {{math|''φ'' + d''φ''}} is specified by the [[determinant]] of the [[Jacobian matrix]] of [[partial derivative]]s, <math display="block"> J =\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} =\begin{pmatrix} \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi\\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & \hphantom{-}r\sin\theta\cos\varphi\\ \cos\theta & -r\sin\theta & \hphantom{-}0 \end{pmatrix}, </math> namely <math display="block"> \mathrm{d}V = \left|\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)}\right| \,\mathrm{d}r \,\mathrm{d}\theta \,\mathrm{d}\varphi= r^2 \sin\theta \,\mathrm{d}r \,\mathrm{d}\theta \,\mathrm{d}\varphi = r^2 \,\mathrm{d}r \,\mathrm{d}\Omega ~. </math> Thus, for example, a function {{math|''f''(''r'', ''θ'', ''φ'')}} can be integrated over every point in {{math|'''R'''<sup>3</sup>}} by the [[Multiple integral#Spherical coordinates|triple integral]] <math display="block">\int\limits_0^{2\pi} \int\limits_0^\pi \int\limits_0^\infty f(r, \theta, \varphi) r^2 \sin\theta \,\mathrm{d}r \,\mathrm{d}\theta \,\mathrm{d}\varphi ~.</math> The [[del]] operator in this system leads to the following expressions for the [[gradient]] and [[Laplacian]] for scalar fields, <math display="block">\begin{align} \nabla f &= {\partial f \over \partial r}\hat{\mathbf r} + {1 \over r}{\partial f \over \partial \theta}\hat{\boldsymbol\theta} + {1 \over r\sin\theta}{\partial f \over \partial \varphi}\hat{\boldsymbol\varphi}, \\[8pt] \nabla^2 f &= {1 \over r^2}{\partial \over \partial r} \left(r^2 {\partial f \over \partial r}\right) + {1 \over r^2 \sin\theta}{\partial \over \partial \theta} \left(\sin\theta {\partial f \over \partial \theta}\right) + {1 \over r^2 \sin^2\theta}{\partial^2 f \over \partial \varphi^2} \\[8pt] & = \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}\right) f + {1 \over r^2 \sin\theta}{\partial \over \partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta}\right) f + \frac{1}{r^2 \sin^2\theta}\frac{\partial^2}{\partial \varphi^2}f ~, \\[8pt] \end{align}</math>And it leads to the following expressions for the [[divergence]] and [[curl (mathematics)|curl]] of [[Vector field|vector fields]], <math display="block">\nabla \cdot \mathbf{A} = \frac{1}{r^2}{\partial \over \partial r}\left( r^2 A_r \right) + \frac{1}{r \sin\theta}{\partial \over \partial\theta} \left( \sin\theta A_\theta \right) + \frac{1}{r \sin \theta} {\partial A_\varphi \over \partial \varphi},</math><math display="block">\begin{align} \nabla \times \mathbf{A} = {} & \frac{1}{r\sin\theta} \left[{\partial \over \partial \theta} \left( A_\varphi\sin\theta \right) - {\partial A_\theta \over \partial \varphi}\right] \hat{\mathbf r} \\[4pt] & {} + \frac 1 r \left[{1 \over \sin\theta}{\partial A_r \over \partial \varphi} - {\partial \over \partial r} \left( r A_\varphi \right) \right] \hat{\boldsymbol\theta} \\[4pt] & {} + \frac 1 r \left[{\partial \over \partial r} \left( r A_\theta \right) - {\partial A_r \over \partial \theta}\right] \hat{\boldsymbol\varphi}, \end{align}</math> Further, the inverse Jacobian in Cartesian coordinates is <math display="block">J^{-1} = \begin{pmatrix} \dfrac{x}{r}&\dfrac{y}{r}&\dfrac{z}{r}\\\\ \dfrac{xz}{r^2\sqrt{x^2+y^2}}&\dfrac{yz}{r^2\sqrt{x^2+y^2}}&\dfrac{-\left(x^2 + y^2\right)}{r^2\sqrt{x^2+y^2}}\\\\ \dfrac{-y}{x^2+y^2}&\dfrac{x}{x^2+y^2}&0 \end{pmatrix}.</math> The [[metric tensor]] in the spherical coordinate system is <math>g = J^T J </math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Spherical coordinate system
(section)
Add topic